Tutorial in Joint Modeling and Prediction: a Statistical Software for Correlated Longitudinal Outcomes, Recurrent Events and a Terminal Event

Agnieszka Kr'ol, A. Mauguen, Yassin Mazroui, Alexandre Laurent, S. Michiels, V. Rondeau
{"title":"Tutorial in Joint Modeling and Prediction: a Statistical Software for Correlated Longitudinal Outcomes, Recurrent Events and a Terminal Event","authors":"Agnieszka Kr'ol, A. Mauguen, Yassin Mazroui, Alexandre Laurent, S. Michiels, V. Rondeau","doi":"10.18637/jss.v081.i03","DOIUrl":null,"url":null,"abstract":"Extensions in the field of joint modeling of correlated data and dynamic predictions improve the development of prognosis research. The R package frailtypack provides estimations of various joint models for longitudinal data and survival events. In particular, it fits models for recurrent events and a terminal event (frailtyPenal), models for two survival outcomes for clustered data (frailtyPenal), models for two types of recurrent events and a terminal event (multivPenal), models for a longitudinal biomarker and a terminal event (longiPenal) and models for a longitudinal biomarker, recurrent events and a terminal event (trivPenal). The estimators are obtained using a standard and penalized maximum likelihood approach, each model function allows to evaluate goodness-of-fit analyses and plots of baseline hazard functions. Finally, the package provides individual dynamic predictions of the terminal event and evaluation of predictive accuracy. This paper presents theoretical models with estimation techniques, applies the methods for predictions and illustrates frailtypack functions details with examples.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/jss.v081.i03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Extensions in the field of joint modeling of correlated data and dynamic predictions improve the development of prognosis research. The R package frailtypack provides estimations of various joint models for longitudinal data and survival events. In particular, it fits models for recurrent events and a terminal event (frailtyPenal), models for two survival outcomes for clustered data (frailtyPenal), models for two types of recurrent events and a terminal event (multivPenal), models for a longitudinal biomarker and a terminal event (longiPenal) and models for a longitudinal biomarker, recurrent events and a terminal event (trivPenal). The estimators are obtained using a standard and penalized maximum likelihood approach, each model function allows to evaluate goodness-of-fit analyses and plots of baseline hazard functions. Finally, the package provides individual dynamic predictions of the terminal event and evaluation of predictive accuracy. This paper presents theoretical models with estimation techniques, applies the methods for predictions and illustrates frailtypack functions details with examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联合建模与预测教程:一种相关纵向结果、复发事件和终点事件的统计软件
相关数据联合建模和动态预测领域的扩展促进了预后研究的发展。R包脆弱包提供了纵向数据和生存事件的各种联合模型的估计。特别是,它适合复发事件和终止事件的模型(frailtyPenal),集群数据的两个生存结果模型(frailtyPenal),两种类型的复发事件和终止事件的模型(multivPenal),纵向生物标志物和终止事件的模型(longiPenal)以及纵向生物标志物,复发事件和终止事件的模型(trivPenal)。使用标准和惩罚最大似然方法获得估计量,每个模型函数允许评估拟合优度分析和基线危险函数的图。最后,该软件包提供了终端事件的个别动态预测和预测精度的评估。本文用估计技术建立了理论模型,应用该方法进行预测,并用实例详细说明了脆弱包函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1