Performance Enhancement of an a-Si:H/μc-Si:H Heterojunction p-i-n Solar Cell by Tuning the Device Parameters

Md Nazmul Islam, H. R. Ghosh
{"title":"Performance Enhancement of an a-Si:H/μc-Si:H Heterojunction p-i-n Solar Cell by Tuning the Device Parameters","authors":"Md Nazmul Islam, H. R. Ghosh","doi":"10.3329/dujs.v69i2.56488","DOIUrl":null,"url":null,"abstract":"In this work, the solar cell design parameters like- layer thickness, bandgap, donor and acceptor concentrations are varied to find optimum structure of a hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) heterojunction p-i-n solar cell. A thin a-Si:H p-layer of 1 to 5 nm followed by a thick a-Si:H i-layer of thickness 1400 to 1600 nm and then thin n-layer of thickness 1 to 5 nm with acceptor concentration of 102 cm−3 and donor concentration of 1020 cm−3 and the bandgaps of p-, i-, and n- layers with higher bandgaps closer to 2.2 eV for a-Si:H p-layer, 1.85 eV for a-Si:H i-layer, and 1.2 eV for μc-Si:H n-layer have showed better performances. The optimum cell has a JSC of 18.93 mA/cm2, VOC of 1095 mV, Fill factor of 0.7124, and efficiency of 14.77%. The overall external quantum efficiency of the numerically designed cell also remained very high from 85-95 % for wavelengths of 300-650 nm range. This indicates that the device will perform its best under both high and low frequency i.e. ultra-violet, near visible and visible light wavelengths.\nDhaka Univ. J. Sci. 69(2): 88-95, 2021 (July)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v69i2.56488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the solar cell design parameters like- layer thickness, bandgap, donor and acceptor concentrations are varied to find optimum structure of a hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) heterojunction p-i-n solar cell. A thin a-Si:H p-layer of 1 to 5 nm followed by a thick a-Si:H i-layer of thickness 1400 to 1600 nm and then thin n-layer of thickness 1 to 5 nm with acceptor concentration of 102 cm−3 and donor concentration of 1020 cm−3 and the bandgaps of p-, i-, and n- layers with higher bandgaps closer to 2.2 eV for a-Si:H p-layer, 1.85 eV for a-Si:H i-layer, and 1.2 eV for μc-Si:H n-layer have showed better performances. The optimum cell has a JSC of 18.93 mA/cm2, VOC of 1095 mV, Fill factor of 0.7124, and efficiency of 14.77%. The overall external quantum efficiency of the numerically designed cell also remained very high from 85-95 % for wavelengths of 300-650 nm range. This indicates that the device will perform its best under both high and low frequency i.e. ultra-violet, near visible and visible light wavelengths. Dhaka Univ. J. Sci. 69(2): 88-95, 2021 (July)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
a-Si:H/μc-Si:H异质结p-i-n太阳能电池性能的优化研究
本文通过改变太阳能电池的设计参数,如-层厚度、带隙、供体和受体浓度等,找到了氢化非晶硅(a- si:H)和氢化微晶硅(μc-Si:H)异质结p-i-n太阳能电池的最佳结构。A - si:H薄层厚度为1 ~ 5 nm,然后是厚度为1400 ~ 1600 nm的A - si:H薄层,然后是厚度为1 ~ 5 nm的n薄层,受体浓度为102 cm−3,施主浓度为1020 cm−3,p-、i-和n-层的带隙较高,A - si:H薄层的带隙接近2.2 eV, A - si:H薄层的带隙接近1.85 eV, μc-Si:H薄层的带隙接近1.2 eV,表现出较好的性能。优化后的电池JSC为18.93 mA/cm2, VOC为1095 mV,填充系数为0.7124,效率为14.77%。在300-650 nm波长范围内,数值设计的电池的整体外量子效率也保持在85- 95%之间。这表明该器件在高频和低频(即紫外线、近可见光和可见光波长)下都能发挥最佳性能。达卡大学学报:自然科学版,69(2):88- 95,2021 (7)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Covid-19 Pandemic and Pre-pandemic Economic Shocks to Brazil, India, and Mexico: A Forecast Comparison Evaluating the Impact and Recovery New Traveling Wave Solutions to the Simplified Modified Camassa–Holm Equation and the Landau-Ginsburg-Higgs Equation Phytochemical Investigation and Biological Studies of Coffea benghalensis B. Heyne Ex Schult Synthesis and Characterization of Vanadium Doped Hexagonal Rubidium Tungsten Bronze Preparation and Characterization of Porous Carbon Material from Banana Pseudo-Stem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1