Beyza Bozali, J. J. F. V. Dam, L. Plaude, K. Jansen
{"title":"Development of hysteresis-free and linear knitted strain sensors for smart textile applications","authors":"Beyza Bozali, J. J. F. V. Dam, L. Plaude, K. Jansen","doi":"10.1109/SENSORS47087.2021.9639613","DOIUrl":null,"url":null,"abstract":"Smart textiles have been attracting considerable interest in imparting a wide range of functions to traditional clothing ranging from sensing, actuation, data processing, and energy storage. In the case of textile-based strain sensors, most of the studies proved that they can work in principle, however, producing strain sensors with desirable properties such as stable sensitivity, small hysteresis, large enough working range, and good repeatability still remains a challenge necessitating the developments of novel technologies for soft sensors. This paper conducts a systematic approach to investigate the electromechanical properties of the knitted strain sensors to find out the optimum process parameters. We found a repeatable and robust method to produce knitted strain sensors with low hysteresis at a working range of at least 40%.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"70 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Smart textiles have been attracting considerable interest in imparting a wide range of functions to traditional clothing ranging from sensing, actuation, data processing, and energy storage. In the case of textile-based strain sensors, most of the studies proved that they can work in principle, however, producing strain sensors with desirable properties such as stable sensitivity, small hysteresis, large enough working range, and good repeatability still remains a challenge necessitating the developments of novel technologies for soft sensors. This paper conducts a systematic approach to investigate the electromechanical properties of the knitted strain sensors to find out the optimum process parameters. We found a repeatable and robust method to produce knitted strain sensors with low hysteresis at a working range of at least 40%.