{"title":"Deep learning-based text knowledge classification for whole-process engineering consulting standards","authors":"Gu Jianan , Ren Kehao , Gao Binwei","doi":"10.1016/j.jer.2023.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>The knowledge classification technology has significant implications for the intelligent research of industries. In the field of whole-process engineering consulting, manually reading and processing large amounts of text data is both time-consuming and laborious. Knowledge classification technology can automatically classify these text data and extract key information, which can improve industry work efficiency. In this study, a deep learning-based text knowledge classification method is proposed to address the large-scale text classification problem in the whole-process engineering consulting field. Firstly, pre-trained language models such as RoBERTa, BERT, and Longformer-RoBERTa are used to extract features from text. Secondly, a multi-label classification model is used to classify the text. Experimental results show that the proposed method performs better than other commonly used models in both overall classification performance and individual category classification performance. Moreover, when the text knowledge classification model is integrated as a text representation module with common classification models such as CNN and LSTM, its performance is inferior to that of a pure classification model. The proposed text knowledge classification method is of great significance for the application in the field of whole-process engineering consulting and provides an effective solution for intelligent research in engineering consulting.</p></div>","PeriodicalId":48803,"journal":{"name":"Journal of Engineering Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307187723001724/pdfft?md5=b74773e986260413d65121d82bb36b42&pid=1-s2.0-S2307187723001724-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307187723001724","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The knowledge classification technology has significant implications for the intelligent research of industries. In the field of whole-process engineering consulting, manually reading and processing large amounts of text data is both time-consuming and laborious. Knowledge classification technology can automatically classify these text data and extract key information, which can improve industry work efficiency. In this study, a deep learning-based text knowledge classification method is proposed to address the large-scale text classification problem in the whole-process engineering consulting field. Firstly, pre-trained language models such as RoBERTa, BERT, and Longformer-RoBERTa are used to extract features from text. Secondly, a multi-label classification model is used to classify the text. Experimental results show that the proposed method performs better than other commonly used models in both overall classification performance and individual category classification performance. Moreover, when the text knowledge classification model is integrated as a text representation module with common classification models such as CNN and LSTM, its performance is inferior to that of a pure classification model. The proposed text knowledge classification method is of great significance for the application in the field of whole-process engineering consulting and provides an effective solution for intelligent research in engineering consulting.
期刊介绍:
Journal of Engineering Research (JER) is a international, peer reviewed journal which publishes full length original research papers, reviews, case studies related to all areas of Engineering such as: Civil, Mechanical, Industrial, Electrical, Computer, Chemical, Petroleum, Aerospace, Architectural, Biomedical, Coastal, Environmental, Marine & Ocean, Metallurgical & Materials, software, Surveying, Systems and Manufacturing Engineering. In particular, JER focuses on innovative approaches and methods that contribute to solving the environmental and manufacturing problems, which exist primarily in the Arabian Gulf region and the Middle East countries. Kuwait University used to publish the Journal "Kuwait Journal of Science and Engineering" (ISSN: 1024-8684), which included Science and Engineering articles since 1974. In 2011 the decision was taken to split KJSE into two independent Journals - "Journal of Engineering Research "(JER) and "Kuwait Journal of Science" (KJS).