The similarity-based method: a new object detection method for deterministic and ensemble weather forecasts

Q2 Earth and Planetary Sciences Advances in Science and Research Pub Date : 2019-09-03 DOI:10.5194/asr-16-209-2019
L. Rottner, P. Arbogast, Mayeul Destouches, Yamina Hamidi, L. Raynaud
{"title":"The similarity-based method: a new object detection method for deterministic and ensemble weather forecasts","authors":"L. Rottner, P. Arbogast, Mayeul Destouches, Yamina Hamidi, L. Raynaud","doi":"10.5194/asr-16-209-2019","DOIUrl":null,"url":null,"abstract":"Abstract. A new object-oriented method has been developed to detect hazardous phenomena predicted by Numerical Weather Prediction (NWP) models. This method, called similarity-based method, is looking for specific meteorological objects in the forecasts, which are defined by a reference histogram representing the meteorological phenomena to be detected. The similarity-based method enables to cope with small scale unpredictable details of mesoscale structures in meteorological models and to quantify the uncertainties on the location of the predicted phenomena. Applied to ensemble forecasts, the similarity-based method can be viewed as a particular case of neighborhood processing, allowing spatialized probabilities to be computed. An application to rainfall detection using forecasts from the AROME deterministic and ensemble models is presented.\n","PeriodicalId":30081,"journal":{"name":"Advances in Science and Research","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/asr-16-209-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. A new object-oriented method has been developed to detect hazardous phenomena predicted by Numerical Weather Prediction (NWP) models. This method, called similarity-based method, is looking for specific meteorological objects in the forecasts, which are defined by a reference histogram representing the meteorological phenomena to be detected. The similarity-based method enables to cope with small scale unpredictable details of mesoscale structures in meteorological models and to quantify the uncertainties on the location of the predicted phenomena. Applied to ensemble forecasts, the similarity-based method can be viewed as a particular case of neighborhood processing, allowing spatialized probabilities to be computed. An application to rainfall detection using forecasts from the AROME deterministic and ensemble models is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似性的方法:一种新的确定性和集合天气预报目标检测方法
摘要提出了一种新的面向对象的方法来检测数值天气预报模式预测的危险现象。这种方法称为相似度法,它在预报中寻找特定的气象对象,这些气象对象由代表待探测气象现象的参考直方图定义。基于相似度的方法能够处理气象模式中尺度结构的小尺度不可预测的细节,并量化预测现象位置的不确定性。应用于集合预测,基于相似度的方法可以看作是邻域处理的一个特殊情况,允许计算空间化概率。介绍了利用AROME确定性模型和集合模型预报进行降雨探测的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Science and Research
Advances in Science and Research Earth and Planetary Sciences-Geophysics
CiteScore
4.10
自引率
0.00%
发文量
13
审稿时长
22 weeks
期刊最新文献
Mesoscale weather influenced by auroral gravity waves contributing to conditional symmetric instability release? Probabilistic end-to-end irradiance forecasting through pre-trained deep learning models using all-sky-images Intercomparing the quality of recent reanalyses for offshore wind farm planning in Germany's exclusive economic zone of the North Sea Internal boundary layer characteristics at the southern Bulgarian Black Sea coast Recent improvements in the E-OBS gridded data set for daily mean wind speed over Europe in the period 1980–2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1