{"title":"Experimental Modal Analysis of Stators Analyzing the Effects of Lamination and Winding","authors":"Manuel Islam, M. Maeder, R. Lehmann, S. Marburg","doi":"10.1115/1.4062839","DOIUrl":null,"url":null,"abstract":"\n This paper addresses the experimental analysis of different stator configurations of an electric motor typically used within the automotive sector. The ongoing electrification of the automotive sector, combined with a desire to increase virtual prototyping, means that engineers are increasingly facing new challenges. Against this background, the numerical models of electric motors, particularly stators, are simplified and homogenized. However, this procedure must be supplemented by experimental data to ensure the high quality and reliability of the simulations. Unfortunately, broad experimental investigations are time-consuming and expensive, underlined by the lack of corresponding literature. For this reason, four different stator configurations were investigated as part of experimental modal analysis to highlight the influence of the stator lamination as well as the winding. The results provide the scientific community with a broad outline of how specific influences change modal parameters of each stator configuration. In particular, the results show that lamination significantly reduces axial stiffness. Highlights of the findings relate to the mode-dependent stiffness, mass, and damping influences due to the winding, with the influence of the stiffness deviating significantly from expectation. It was also found that the selected winding technology dominates the structural dynamic system characteristics. Therefore, it is advisable to include the manufacturing technology intended to be used for the lamination and the winding in the early simulative design phase to improve the model prediction quality.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062839","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the experimental analysis of different stator configurations of an electric motor typically used within the automotive sector. The ongoing electrification of the automotive sector, combined with a desire to increase virtual prototyping, means that engineers are increasingly facing new challenges. Against this background, the numerical models of electric motors, particularly stators, are simplified and homogenized. However, this procedure must be supplemented by experimental data to ensure the high quality and reliability of the simulations. Unfortunately, broad experimental investigations are time-consuming and expensive, underlined by the lack of corresponding literature. For this reason, four different stator configurations were investigated as part of experimental modal analysis to highlight the influence of the stator lamination as well as the winding. The results provide the scientific community with a broad outline of how specific influences change modal parameters of each stator configuration. In particular, the results show that lamination significantly reduces axial stiffness. Highlights of the findings relate to the mode-dependent stiffness, mass, and damping influences due to the winding, with the influence of the stiffness deviating significantly from expectation. It was also found that the selected winding technology dominates the structural dynamic system characteristics. Therefore, it is advisable to include the manufacturing technology intended to be used for the lamination and the winding in the early simulative design phase to improve the model prediction quality.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.