{"title":"Representing and Predicting Everyday Behavior","authors":"M. Singh, Russell Richie, Sudeep Bhatia","doi":"10.31234/osf.io/kb53h","DOIUrl":null,"url":null,"abstract":"The prediction of everyday human behavior is a central goal in the behavioral sciences. However, efforts in this direction have been limited, as (1) the behaviors studied in most surveys and experiments represent only a small fraction of all possible behaviors, and (2) it has been difficult to generalize data from existing studies to predict arbitrary behaviors, owing to the difficulty in adequately representing such behaviors. Our paper attempts to address each of these problems. First, by sampling frequent verb phrases in natural language and refining these through human coding, we compile a dataset of nearly 4000 common human behaviors. Second, we use distributed semantic models to obtain vector representations for our behaviors, and combine these with demographic and psychographic data, to build supervised, deep neural network models of behavioral propensities for a representative sample of the US population. Our best models achieve reasonable accuracy rates when predicting propensities for novel (out-of-sample) participants as well as novel behaviors, and offer new insights for modeling psychographic and demographic differences in behavior. This work is a first step towards building predictive theories of everyday behavior, and thus improving the generality and naturalism of research in the behavioral sciences.","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"24 1","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31234/osf.io/kb53h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The prediction of everyday human behavior is a central goal in the behavioral sciences. However, efforts in this direction have been limited, as (1) the behaviors studied in most surveys and experiments represent only a small fraction of all possible behaviors, and (2) it has been difficult to generalize data from existing studies to predict arbitrary behaviors, owing to the difficulty in adequately representing such behaviors. Our paper attempts to address each of these problems. First, by sampling frequent verb phrases in natural language and refining these through human coding, we compile a dataset of nearly 4000 common human behaviors. Second, we use distributed semantic models to obtain vector representations for our behaviors, and combine these with demographic and psychographic data, to build supervised, deep neural network models of behavioral propensities for a representative sample of the US population. Our best models achieve reasonable accuracy rates when predicting propensities for novel (out-of-sample) participants as well as novel behaviors, and offer new insights for modeling psychographic and demographic differences in behavior. This work is a first step towards building predictive theories of everyday behavior, and thus improving the generality and naturalism of research in the behavioral sciences.