Byeong-Chae Jo, Minghao Nie, A. Shima, Y. Morimoto, S. Takeuchi
{"title":"Micro Tissue Assembly for Co-Culturing 3D Skeletal Muscle and Adipose Tissues","authors":"Byeong-Chae Jo, Minghao Nie, A. Shima, Y. Morimoto, S. Takeuchi","doi":"10.1109/MEMS46641.2020.9056277","DOIUrl":null,"url":null,"abstract":"This paper proposes micro tissue assembly for co-culturing 3D skeletal muscle and adipose tissues. The adipocytes encapsulated in a microfiber were cultured in advance for maturation which accumulated significantly larger size of lipid droplets compared with conventional 2D dish culture. Then, we assembled a micro tissue by placing the microfiber-based adipose tissue on a PDMS substrate with myoblast-laden collagen solution covering on the top. The assembled micro tissue was then co-cultured for 5 days. We found that the skeletal muscle tissue fabricated in the micro tissue bundled up adipose tissue forming in-vivo like composition. Our skeletal muscle and adipose tissue assembly not only gives a promising outlook for the micro physiological system but also tools for development studies or the cultured meat industry.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"24 1","pages":"459-460"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes micro tissue assembly for co-culturing 3D skeletal muscle and adipose tissues. The adipocytes encapsulated in a microfiber were cultured in advance for maturation which accumulated significantly larger size of lipid droplets compared with conventional 2D dish culture. Then, we assembled a micro tissue by placing the microfiber-based adipose tissue on a PDMS substrate with myoblast-laden collagen solution covering on the top. The assembled micro tissue was then co-cultured for 5 days. We found that the skeletal muscle tissue fabricated in the micro tissue bundled up adipose tissue forming in-vivo like composition. Our skeletal muscle and adipose tissue assembly not only gives a promising outlook for the micro physiological system but also tools for development studies or the cultured meat industry.