Maksym A. Girnyk, Frederic Gabry, Mikko Vehkaperä, L. Rasmussen, M. Skoglund
{"title":"MIMO wiretap channels with randomly located eavesdroppers: Large-system analysis","authors":"Maksym A. Girnyk, Frederic Gabry, Mikko Vehkaperä, L. Rasmussen, M. Skoglund","doi":"10.1109/ICCW.2015.7247226","DOIUrl":null,"url":null,"abstract":"Security issues in wireless networks have become a subject of growing interest in recent years due to the broadcast nature of wireless channels. In this paper, we investigate secure communication over a multi-antenna wiretap channel in the presence of randomly distributed eavesdroppers. In the fast fading environment, the overall performance of this channel is traditionally characterized by the ergodic secrecy capacity, which, in general, cannot be derived explicitly. Nevertheless, based on the assumption that the numbers of antennas at legitimate terminals and the number of eavesdroppers grow large without bound, we derive a deterministic approximation of an achievable ergodic secrecy rate for arbitrary inputs. In addition, we characterize the secrecy rates for practically relevant separate-decoding scheme at the receiver. We validate the proposed large-system approximation through numerical simulations and observe a good match with the actual secrecy rates. Finally, we also analyze some interesting behavior of the secrecy rates in the given scenario depending on the geometry of the nodes.","PeriodicalId":6464,"journal":{"name":"2015 IEEE International Conference on Communication Workshop (ICCW)","volume":"7 1","pages":"480-484"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Workshop (ICCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2015.7247226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Security issues in wireless networks have become a subject of growing interest in recent years due to the broadcast nature of wireless channels. In this paper, we investigate secure communication over a multi-antenna wiretap channel in the presence of randomly distributed eavesdroppers. In the fast fading environment, the overall performance of this channel is traditionally characterized by the ergodic secrecy capacity, which, in general, cannot be derived explicitly. Nevertheless, based on the assumption that the numbers of antennas at legitimate terminals and the number of eavesdroppers grow large without bound, we derive a deterministic approximation of an achievable ergodic secrecy rate for arbitrary inputs. In addition, we characterize the secrecy rates for practically relevant separate-decoding scheme at the receiver. We validate the proposed large-system approximation through numerical simulations and observe a good match with the actual secrecy rates. Finally, we also analyze some interesting behavior of the secrecy rates in the given scenario depending on the geometry of the nodes.