{"title":"Global Land Temperature Forecasting Using Long Short-Term Memory Network","authors":"Prashanti Maktala, M. Hashemi","doi":"10.1109/IRI49571.2020.00038","DOIUrl":null,"url":null,"abstract":"Based on NASA’s 40 years of satellite data, earth has experienced drastic climatic changes in the form of sea-level rise, an increase in oceanic and atmospheric temperatures, depletion of the Ozone layer, and decrease in sea ice and snow cover. These observations point to the fact that the world is getting warmer, which significantly impacts humans and ecological systems. Forecasting global land temperature could help to identify the extent of devasting consequences on the natural habitat and shed light on the impact of policies, designed to mitigate them. Previous studies have attempted to forecast regional temperatures using traditional machine learning models. This paper uses a standard multi-layer perceptron, a simple Recurrent Neural Network, and a Long Short-Term Memory network to forecast next month’s global land temperature. Our results show that deep learning outperforms traditional machine learning models, including decision tree, random forest, and ridge regression.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Based on NASA’s 40 years of satellite data, earth has experienced drastic climatic changes in the form of sea-level rise, an increase in oceanic and atmospheric temperatures, depletion of the Ozone layer, and decrease in sea ice and snow cover. These observations point to the fact that the world is getting warmer, which significantly impacts humans and ecological systems. Forecasting global land temperature could help to identify the extent of devasting consequences on the natural habitat and shed light on the impact of policies, designed to mitigate them. Previous studies have attempted to forecast regional temperatures using traditional machine learning models. This paper uses a standard multi-layer perceptron, a simple Recurrent Neural Network, and a Long Short-Term Memory network to forecast next month’s global land temperature. Our results show that deep learning outperforms traditional machine learning models, including decision tree, random forest, and ridge regression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用长短期记忆网络预测全球陆地温度
根据美国国家航空航天局40年的卫星数据,地球经历了剧烈的气候变化,表现为海平面上升、海洋和大气温度升高、臭氧层耗竭、海冰和积雪减少。这些观察结果表明,世界正在变暖,这对人类和生态系统产生了重大影响。预测全球陆地温度可以帮助确定对自然栖息地的破坏性后果的程度,并阐明旨在减轻这些后果的政策的影响。之前的研究试图使用传统的机器学习模型来预测区域温度。本文使用一个标准的多层感知器、一个简单的循环神经网络和一个长短期记忆网络来预测下个月的全球陆地温度。我们的研究结果表明,深度学习优于传统的机器学习模型,包括决策树、随机森林和山脊回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1