Adaptive filtering and neural networks for realisation of internal model control

K. Hunt, D. Sbarbaro
{"title":"Adaptive filtering and neural networks for realisation of internal model control","authors":"K. Hunt, D. Sbarbaro","doi":"10.1049/ISE.1993.0008","DOIUrl":null,"url":null,"abstract":"The authors show that adaptive inverse control is a member of the class of control design techniques with an internal model control structure. By implication, therefore, adaptive inverse control is supported by the firm analytical foundation on which internal model control is now based. They present artificial neural network architectures for the implementation of nonlinear internal model control. This approach can be viewed as a nonlinear analogue of adaptive inverse control; the network models used are nothing more than nonlinear adaptive filters. The authors use two separate networks in the implementation of nonlinear IMC; one network models the plant, and the second network models the plant inverse. They conclude with a simulation example demonstrating nonlinear IMC using neural networks. >","PeriodicalId":55165,"journal":{"name":"Engineering Intelligent Systems for Electrical Engineering and Communications","volume":"9 1","pages":"67-76"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Intelligent Systems for Electrical Engineering and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ISE.1993.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The authors show that adaptive inverse control is a member of the class of control design techniques with an internal model control structure. By implication, therefore, adaptive inverse control is supported by the firm analytical foundation on which internal model control is now based. They present artificial neural network architectures for the implementation of nonlinear internal model control. This approach can be viewed as a nonlinear analogue of adaptive inverse control; the network models used are nothing more than nonlinear adaptive filters. The authors use two separate networks in the implementation of nonlinear IMC; one network models the plant, and the second network models the plant inverse. They conclude with a simulation example demonstrating nonlinear IMC using neural networks. >
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应滤波和神经网络实现内模控制
作者指出自适应逆控制是一类具有内模控制结构的控制设计技术。由此可见,自适应逆控制得到了坚实的分析基础的支持,而现在的内模控制正是基于这一分析基础。他们提出了用于实现非线性内模控制的人工神经网络体系结构。这种方法可以看作是自适应逆控制的非线性模拟;所使用的网络模型只不过是非线性自适应滤波器。作者使用两个独立的网络来实现非线性内模控制;一个网络模拟植物,第二个网络模拟植物逆。最后给出了一个用神经网络进行非线性内模控制的仿真实例。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel genetic algorithm for generation expansion planning Neural network based classification system for texture images with its applications TIGER: real-time situation assessment of dynamic systems Auto-associative memory using n-tuple techniques Scheduling theory and practice: Minsk group results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1