Muhammad Yahya, Aabid Ali, Qaiser Mehmood, Lan Yang, J. Breslin, M. Ali
{"title":"A benchmark dataset with Knowledge Graph generation for Industry 4.0 production lines","authors":"Muhammad Yahya, Aabid Ali, Qaiser Mehmood, Lan Yang, J. Breslin, M. Ali","doi":"10.3233/sw-233431","DOIUrl":null,"url":null,"abstract":"Industry 4.0 (I4.0) is a new era in the industrial revolution that emphasizes machine connectivity, automation, and data analytics. The I4.0 pillars such as autonomous robots, cloud computing, horizontal and vertical system integration, and the industrial internet of things have increased the performance and efficiency of production lines in the manufacturing industry. Over the past years, efforts have been made to propose semantic models to represent the manufacturing domain knowledge, one such model is Reference Generalized Ontological Model (RGOM).11 https://w3id.org/rgom However, its adaptability like other models is not ensured due to the lack of manufacturing data. In this paper, we aim to develop a benchmark dataset for knowledge graph generation in Industry 4.0 production lines and to show the benefits of using ontologies and semantic annotations of data to showcase how the I4.0 industry can benefit from KGs and semantic datasets. This work is the result of collaboration with the production line managers, supervisors, and engineers in the football industry to acquire realistic production line data22 https://github.com/MuhammadYahta/ManufacturingProductionLineDataSetGeneration-Football,.33 https://zenodo.org/record/7779522 Knowledge Graphs (KGs) or Knowledge Graph (KG) have emerged as a significant technology to store the semantics of the domain entities. KGs have been used in a variety of industries, including banking, the automobile industry, oil and gas, pharmaceutical and health care, publishing, media, etc. The data is mapped and populated to the RGOM classes and relationships using an automated solution based on JenaAPI, producing an I4.0 KG. It contains more than 2.5 million axioms and about 1 million instances. This KG enables us to demonstrate the adaptability and usefulness of the RGOM. Our research helps the production line staff to take timely decisions by exploiting the information embedded in the KG. In relation to this, the RGOM adaptability is demonstrated with the help of a use case scenario to discover required information such as current temperature at a particular time, the status of the motor, tools deployed on the machine, etc.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233431","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Industry 4.0 (I4.0) is a new era in the industrial revolution that emphasizes machine connectivity, automation, and data analytics. The I4.0 pillars such as autonomous robots, cloud computing, horizontal and vertical system integration, and the industrial internet of things have increased the performance and efficiency of production lines in the manufacturing industry. Over the past years, efforts have been made to propose semantic models to represent the manufacturing domain knowledge, one such model is Reference Generalized Ontological Model (RGOM).11 https://w3id.org/rgom However, its adaptability like other models is not ensured due to the lack of manufacturing data. In this paper, we aim to develop a benchmark dataset for knowledge graph generation in Industry 4.0 production lines and to show the benefits of using ontologies and semantic annotations of data to showcase how the I4.0 industry can benefit from KGs and semantic datasets. This work is the result of collaboration with the production line managers, supervisors, and engineers in the football industry to acquire realistic production line data22 https://github.com/MuhammadYahta/ManufacturingProductionLineDataSetGeneration-Football,.33 https://zenodo.org/record/7779522 Knowledge Graphs (KGs) or Knowledge Graph (KG) have emerged as a significant technology to store the semantics of the domain entities. KGs have been used in a variety of industries, including banking, the automobile industry, oil and gas, pharmaceutical and health care, publishing, media, etc. The data is mapped and populated to the RGOM classes and relationships using an automated solution based on JenaAPI, producing an I4.0 KG. It contains more than 2.5 million axioms and about 1 million instances. This KG enables us to demonstrate the adaptability and usefulness of the RGOM. Our research helps the production line staff to take timely decisions by exploiting the information embedded in the KG. In relation to this, the RGOM adaptability is demonstrated with the help of a use case scenario to discover required information such as current temperature at a particular time, the status of the motor, tools deployed on the machine, etc.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.