Three dimensional multi fracture induced stress model for highly deviated wells

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Energy Sources Part B-Economics Planning and Policy Pub Date : 2023-01-11 DOI:10.1080/15567249.2023.2166165
Shuxing Mu, Yuxuan Liu, Jianchun Guo, Jiangyu Liu, Huifeng Liu, Hao Yu
{"title":"Three dimensional multi fracture induced stress model for highly deviated wells","authors":"Shuxing Mu, Yuxuan Liu, Jianchun Guo, Jiangyu Liu, Huifeng Liu, Hao Yu","doi":"10.1080/15567249.2023.2166165","DOIUrl":null,"url":null,"abstract":"ABSTRACT At present, the development of some oil and gas fields has gradually shifted from vertical to highly deviated wells. To improve the intensity of reservoir reconstruction, highly deviated wells mostly adopt staged fracturing for reservoir reconstruction. The fracture interference law of multiple fractures in highly deviated wells is not clear, and the fracture steering and stress interference problems in the fracturing process are obviously different from those in horizontal wells, resulting in a lack of a theoretical basis for fracture spacing design. Therefore, it is necessary to study the stresses induced by multiple fractures in highly deviated wells. To reproduce the spatial distribution of multiple fractures in highly deviated wells and analyze the changes in induced stress more accurately, a three-dimensional numerical model of the fracture-induced stress field in highly deviated wells was established based on the finite element method and elasticity theory, which can simulate a fracture-induced stress field under different angles of inclination. The results indicate that the key to mutual exclusion or proximity of the two fractures is whether the fractures overlap in the plane parallel to the fracture height direction. Based on the analysis of the control variables, the first fracturing fracture height is the key factor affecting the induced stress, and the fracturing fracture height has slight effect on the induced stress. As the angle of inclination increases, the probability of the two fractures overlapping in space increases and the critical distance from the induced tensile stress to the induced tensile stress decreases. The influence of the fracture half-length, net pressure, and stress difference on the induced stress is related to whether the spatial projection of the two fractures overlaps. The research results provide a theoretical basis for the optimal design of staged fracturing in highly deviated wells.","PeriodicalId":51247,"journal":{"name":"Energy Sources Part B-Economics Planning and Policy","volume":"119 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Sources Part B-Economics Planning and Policy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567249.2023.2166165","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT At present, the development of some oil and gas fields has gradually shifted from vertical to highly deviated wells. To improve the intensity of reservoir reconstruction, highly deviated wells mostly adopt staged fracturing for reservoir reconstruction. The fracture interference law of multiple fractures in highly deviated wells is not clear, and the fracture steering and stress interference problems in the fracturing process are obviously different from those in horizontal wells, resulting in a lack of a theoretical basis for fracture spacing design. Therefore, it is necessary to study the stresses induced by multiple fractures in highly deviated wells. To reproduce the spatial distribution of multiple fractures in highly deviated wells and analyze the changes in induced stress more accurately, a three-dimensional numerical model of the fracture-induced stress field in highly deviated wells was established based on the finite element method and elasticity theory, which can simulate a fracture-induced stress field under different angles of inclination. The results indicate that the key to mutual exclusion or proximity of the two fractures is whether the fractures overlap in the plane parallel to the fracture height direction. Based on the analysis of the control variables, the first fracturing fracture height is the key factor affecting the induced stress, and the fracturing fracture height has slight effect on the induced stress. As the angle of inclination increases, the probability of the two fractures overlapping in space increases and the critical distance from the induced tensile stress to the induced tensile stress decreases. The influence of the fracture half-length, net pressure, and stress difference on the induced stress is related to whether the spatial projection of the two fractures overlaps. The research results provide a theoretical basis for the optimal design of staged fracturing in highly deviated wells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大斜度井三维多裂缝诱发应力模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
12.80%
发文量
42
审稿时长
6-12 weeks
期刊介绍: 12 issues per year Abstracted and/or indexed in: Applied Science & Technology Index; API Abstracts/Literature; Automatic Subject Index Citation; BIOSIS Previews; Cabell’s Directory of Publishing Opportunities in Economics and Finance; Chemical Abstracts; CSA Aquatic Science & Fisheries Abstracts; CSA Environmental Sciences & Pollution Management Database; CSA Pollution Abstracts; Current Contents/Engineering, Technology & Applied Sciences; Directory of Industry Data Sources; Economic Abstracts; Electrical and Electronics Abstracts; Energy Information Abstracts; Energy Research Abstracts; Engineering Index Monthly; Environmental Abstracts; Environmental Periodicals Bibliography (EPB); International Abstracts in Operations Research; Operations/Research/Management Science Abstracts; Petroleum Abstracts; Physikalische Berichte; and Science Citation Index. Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .
期刊最新文献
Prediction of natural gas demand by considering implications of energy-related policies: The case of Türkiye Towards 2050 net zero carbon infrastructure: a critical review of key decarbonization challenges in the domestic heating sector in the UK The impact of the oil price on mineable and non-mineable cryptocurrencies A comprehensive model to explain consumers’ purchasing intention of energy-efficient household appliances: A case study in China Techno-economic assessment of low-carbon hydrogen exports from the Middle East to the Asia-Pacific, and Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1