{"title":"Development of a high-efficiency gaseous elemental radioiodine generator.","authors":"C. Zhao, Y. Chen, J. Liu","doi":"10.1063/5.0086793","DOIUrl":null,"url":null,"abstract":"This study aims to develop a high-efficiency gaseous elemental radioactive iodine generator. To observe the yield of the generator over time, a real-time measurement module was assembled with NaI(Tl) gamma detectors. The Taguchi method was employed to optimize the process parameters and improve the performance of the generator. According to the experimental results, the optimum process parameters were 3.6 l/min for the flow rate of the carrier gas, 0.2 mol/l for the concentration of the NaI reactant solution, and 70 °C for the water bath temperature. The most influential factor was the concentration of the NaI reactant solution. With these optimized process parameters, the yield of the generator was 83% ± 1% (k = 1) in 5 min and reached a plateau (93% ± 1%) in 20 ± 2 min (k = 1).","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"48 1","pages":"043307"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0086793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop a high-efficiency gaseous elemental radioactive iodine generator. To observe the yield of the generator over time, a real-time measurement module was assembled with NaI(Tl) gamma detectors. The Taguchi method was employed to optimize the process parameters and improve the performance of the generator. According to the experimental results, the optimum process parameters were 3.6 l/min for the flow rate of the carrier gas, 0.2 mol/l for the concentration of the NaI reactant solution, and 70 °C for the water bath temperature. The most influential factor was the concentration of the NaI reactant solution. With these optimized process parameters, the yield of the generator was 83% ± 1% (k = 1) in 5 min and reached a plateau (93% ± 1%) in 20 ± 2 min (k = 1).