TRANSFORMATÖR-TABANLI EVRİŞİMLİ SİNİR AĞI MODELİ KULLANARAK TWITTER VERİSİNDE SALDIRGANLIK TESPİTİ

Erdal Özbay
{"title":"TRANSFORMATÖR-TABANLI EVRİŞİMLİ SİNİR AĞI MODELİ KULLANARAK TWITTER VERİSİNDE SALDIRGANLIK TESPİTİ","authors":"Erdal Özbay","doi":"10.36306/konjes.1061807","DOIUrl":null,"url":null,"abstract":"Çevrimiçi ortamlar, insanların sosyal etkileşimlerinde anti-sosyal davranışların artmasını kolaylaştırmaktadır. Sosyal medya kullanımının yaygınlaşmasıyla özellikle son yıllarda nefret söylemleri, siber zorbalık ve trolleme gibi davranışlar önemli ölçüde artmıştır. Saldırgan ve nefret içerikli söylemlerin tespiti siber zorbalıkların azaltılması ve engellenmesinde önemli bir adımdır. Siber zorbalık, sosyal medya üzerinden nefret dolu, saldırgan, kaba, aşağılayıcı ve alaycı ifadeler kullanarak diğer bireylere zarar vermek adına yapılan yorumlar olarak adlandırılmaktadır. Hızla büyüyen verilerin varlığı, bunun insan denetimiyle gerçekleştirilmeye çalışılması yavaş ve pahalı olduğundan saldırganlığın otomatik tespitiyle siber zorbalığın durdurulması sağlanabilir. Bu çalışmada Twitter veri seti olan Cyber-Trolls üzerinden saldırganlık tespitini otomatik olarak belirlenmesi ele alınmaktadır. LMTweets adında bir kodlayıcı, veri kümesinin özelliklerinin çıkarılması için 20001 adet tweet üzerinden eğitilmiştir. Çıkarılan öznitelikler, metni saldırgan / saldırgan olmayan olarak sınıflandırmak üzere evrişim sinir ağı modeline girdi olarak verilir. Ayrıca Naïve Bayes, Destek Vektör Makinesi, K-En Yakın Komşu, olmak üzere üç sınıflandırma algoritması uygulanmıştır. Bunun yanında, Evrişimli Sinir Ağı, Uzun Kısa-Süreli Bellek ve Kapılı Tekrarlayan Birim üç öğrenme algoritması ile birlikte BERT, XLNet ve ULMFIT olmak üzere üç transformatör modeli uygulanmıştır. Önerilen modelde Python, Keras API ve Tensorflow birlikte kullanılmıştır. Deneysel sonuçlarda elde edilen performans parametreleri doğruluk, kesinlik, duyarlılık, F1-ölçütü ve AUC olarak belirlenmiş ve LMTweets + CNN modelinin kullanılan tüm modeller arasında daha iyi performans gösterdiği ortaya konmuştur.","PeriodicalId":17899,"journal":{"name":"Konya Journal of Engineering Sciences","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Konya Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36306/konjes.1061807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Çevrimiçi ortamlar, insanların sosyal etkileşimlerinde anti-sosyal davranışların artmasını kolaylaştırmaktadır. Sosyal medya kullanımının yaygınlaşmasıyla özellikle son yıllarda nefret söylemleri, siber zorbalık ve trolleme gibi davranışlar önemli ölçüde artmıştır. Saldırgan ve nefret içerikli söylemlerin tespiti siber zorbalıkların azaltılması ve engellenmesinde önemli bir adımdır. Siber zorbalık, sosyal medya üzerinden nefret dolu, saldırgan, kaba, aşağılayıcı ve alaycı ifadeler kullanarak diğer bireylere zarar vermek adına yapılan yorumlar olarak adlandırılmaktadır. Hızla büyüyen verilerin varlığı, bunun insan denetimiyle gerçekleştirilmeye çalışılması yavaş ve pahalı olduğundan saldırganlığın otomatik tespitiyle siber zorbalığın durdurulması sağlanabilir. Bu çalışmada Twitter veri seti olan Cyber-Trolls üzerinden saldırganlık tespitini otomatik olarak belirlenmesi ele alınmaktadır. LMTweets adında bir kodlayıcı, veri kümesinin özelliklerinin çıkarılması için 20001 adet tweet üzerinden eğitilmiştir. Çıkarılan öznitelikler, metni saldırgan / saldırgan olmayan olarak sınıflandırmak üzere evrişim sinir ağı modeline girdi olarak verilir. Ayrıca Naïve Bayes, Destek Vektör Makinesi, K-En Yakın Komşu, olmak üzere üç sınıflandırma algoritması uygulanmıştır. Bunun yanında, Evrişimli Sinir Ağı, Uzun Kısa-Süreli Bellek ve Kapılı Tekrarlayan Birim üç öğrenme algoritması ile birlikte BERT, XLNet ve ULMFIT olmak üzere üç transformatör modeli uygulanmıştır. Önerilen modelde Python, Keras API ve Tensorflow birlikte kullanılmıştır. Deneysel sonuçlarda elde edilen performans parametreleri doğruluk, kesinlik, duyarlılık, F1-ölçütü ve AUC olarak belirlenmiş ve LMTweets + CNN modelinin kullanılan tüm modeller arasında daha iyi performans gösterdiği ortaya konmuştur.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GIS-AHP APPROACH FOR A COMPREHENSIVE FRAMEWORK TO DETERMINE THE SUITABLE REGIONS FOR GEOTHERMAL POWER PLANTS IN IZMIR, TÜRKİYE MACHINE WHELL EDGE DETECTION MORPHOLOGICAL OPERATIONS PRODUCTION OF CuO/ZrO2 NANOCOMPOSITES IN POWDER AND FIBER FORMS DETERMINATION BY NUMERICAL MODELING OF STRESS-STRAIN VARIATIONS RESULTING FROM GALLERY CROSS-SECTION CHANGES IN A LONGWALL TOP COAL CAVING PANEL ENCAPSULATION OF VITAMIN D IN THE EXINE-ALGINATE-CHITOSAN MICROCAPSULE SYSTEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1