Modeling morphological learning, typology, and change: What can the neural sequence-to-sequence framework contribute?

Q2 Social Sciences Journal of Language Modelling Pub Date : 2019-12-19 DOI:10.15398/jlm.v7i1.244
M. Elsner, Andrea D. Sims, Alexander Erdmann, A. Hernandez, Evan Jaffe, Lifeng Jin, Martha Booker Johnson, Shuan O. Karim, David L. King, Luana Lamberti Nunes, Byung-Doh Oh, Nathan Rasmussen, Cory Shain, Stephanie Antetomaso, Kendra V. Dickinson, N. Diewald, Michelle Mckenzie, S. Stevens-Guille
{"title":"Modeling morphological learning, typology, and change: What can the neural sequence-to-sequence framework contribute?","authors":"M. Elsner, Andrea D. Sims, Alexander Erdmann, A. Hernandez, Evan Jaffe, Lifeng Jin, Martha Booker Johnson, Shuan O. Karim, David L. King, Luana Lamberti Nunes, Byung-Doh Oh, Nathan Rasmussen, Cory Shain, Stephanie Antetomaso, Kendra V. Dickinson, N. Diewald, Michelle Mckenzie, S. Stevens-Guille","doi":"10.15398/jlm.v7i1.244","DOIUrl":null,"url":null,"abstract":"We survey research using neural sequence-to-sequence models as compu-tational models of morphological learning and learnability. We discusstheir use in determining the predictability of inflectional exponents, inmaking predictions about language acquisition and in modeling languagechange. Finally, we make some proposals for future work in these areas.","PeriodicalId":53310,"journal":{"name":"Journal of Language Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Language Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15398/jlm.v7i1.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 11

Abstract

We survey research using neural sequence-to-sequence models as compu-tational models of morphological learning and learnability. We discusstheir use in determining the predictability of inflectional exponents, inmaking predictions about language acquisition and in modeling languagechange. Finally, we make some proposals for future work in these areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形态学习、类型学和变化建模:神经序列到序列框架的贡献是什么?
我们调查了使用神经序列到序列模型作为形态学学习和可学习性计算模型的研究。我们讨论了它们在确定屈折指数的可预测性、对语言习得进行预测和语言变化建模方面的应用。最后,对今后的工作提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Language Modelling
Journal of Language Modelling Social Sciences-Linguistics and Language
CiteScore
1.30
自引率
0.00%
发文量
4
审稿时长
9 weeks
期刊最新文献
Control, inner topicalisation, and focus fronting in Mandarin Chinese: modelling in parallel constraint-based grammatical architecture Detecting inflectional patterns for Croatian verb stems using class activation mappings Dutch anaphoric possessive construction Constructional approaches in formal grammar Lexical Functional Grammar as a Construction Grammar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1