Alternate formulation for transform learning

Jyoti Maggu, A. Majumdar
{"title":"Alternate formulation for transform learning","authors":"Jyoti Maggu, A. Majumdar","doi":"10.1145/3009977.3010069","DOIUrl":null,"url":null,"abstract":"Dictionary learning has been used to solve inverse problems in imaging and as an unsupervised feature extraction tool in vision. The main disadvantage of dictionary learning for applications in vision is the relatively long feature extraction time during testing; owing to the requirement of solving an iterative optimization problem (l0-minimization). The newly developed analysis framework of transform learning does not suffer from this shortcoming; feature extraction only requires a matrix vector multiplication. This work proposes an alternate formulation for transform learning that improves the accuracy even further. Experiments on benchmark databases show that our proposed transform learning yields results better than dictionary learning, autoencoder (AE) and restricted Boltzmann machine (RBM). The feature extraction time is fast as AE and RBM.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"36 1","pages":"50:1-50:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Dictionary learning has been used to solve inverse problems in imaging and as an unsupervised feature extraction tool in vision. The main disadvantage of dictionary learning for applications in vision is the relatively long feature extraction time during testing; owing to the requirement of solving an iterative optimization problem (l0-minimization). The newly developed analysis framework of transform learning does not suffer from this shortcoming; feature extraction only requires a matrix vector multiplication. This work proposes an alternate formulation for transform learning that improves the accuracy even further. Experiments on benchmark databases show that our proposed transform learning yields results better than dictionary learning, autoencoder (AE) and restricted Boltzmann machine (RBM). The feature extraction time is fast as AE and RBM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转换学习的替代公式
字典学习已被用于解决成像中的逆问题,并在视觉中作为一种无监督特征提取工具。在视觉应用中,字典学习的主要缺点是测试过程中特征提取时间相对较长;由于求解迭代优化问题(10 -最小化)的要求。新发展的转化学习分析框架没有这个缺点;特征提取只需要一个矩阵向量乘法。这项工作提出了一种转换学习的替代公式,可以进一步提高准确性。在基准数据库上的实验表明,本文提出的变换学习方法比字典学习、自动编码器(AE)和受限玻尔兹曼机(RBM)的学习效果更好。特征提取速度比AE和RBM快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱ Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI. ICVGIP 2018: 11th Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, 18-22 December, 2018 Towards semantic visual representation: augmenting image representation with natural language descriptors Adaptive artistic stylization of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1