{"title":"Socio-ecological contagion in Veganville","authors":"Thomas Elliot","doi":"10.1016/j.ecocom.2022.101015","DOIUrl":null,"url":null,"abstract":"<div><p>In order to meet the 2015 Paris Agreement for 1.5 °C global warming, per capita emissions need to come down to 2.9 tonnes by 2030. Food systems are known to be a significant source of an individual's carbon footprint and demand attention in sustainability management. The objective of this research is to conceptualise and define an intersection between contagion theory and socio-ecological systems models. This is achieved using a population dynamics model between two groups characterised by a distinct food regime: omnivores and vegans. The greenhouse gas emissions of each food regime is used to estimate the city's changing carbon foodprint as the food regimes shift by social contagion. Social contagion is identified as a catalyst for social tipping points, and emission pathways are explored with a variety of different contagion variables to test sensitivity towards a tipping point. The main finding is that the urban carbon foodprint can be reduced significantly with widespread adoption of veganism, but that the foodprint reaches a minimum at 1.97 tonnes CO<sub>2</sub>-equivalent per capita. This demonstrates the need to embed food demand in urban climate governance such as nudging towards plant-based food alternatives. Nudging is discussed as a lever of ecological importance to social contagion. Lastly, socio-ecological contagion is defined as <em>the interactions between social contagion and damage done to ecological systems to measure peer-to-peer spread of environmental stewardship agendas</em>, such as the journey to Veganville<em>.</em></p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"51 ","pages":"Article 101015"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X22000368","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
In order to meet the 2015 Paris Agreement for 1.5 °C global warming, per capita emissions need to come down to 2.9 tonnes by 2030. Food systems are known to be a significant source of an individual's carbon footprint and demand attention in sustainability management. The objective of this research is to conceptualise and define an intersection between contagion theory and socio-ecological systems models. This is achieved using a population dynamics model between two groups characterised by a distinct food regime: omnivores and vegans. The greenhouse gas emissions of each food regime is used to estimate the city's changing carbon foodprint as the food regimes shift by social contagion. Social contagion is identified as a catalyst for social tipping points, and emission pathways are explored with a variety of different contagion variables to test sensitivity towards a tipping point. The main finding is that the urban carbon foodprint can be reduced significantly with widespread adoption of veganism, but that the foodprint reaches a minimum at 1.97 tonnes CO2-equivalent per capita. This demonstrates the need to embed food demand in urban climate governance such as nudging towards plant-based food alternatives. Nudging is discussed as a lever of ecological importance to social contagion. Lastly, socio-ecological contagion is defined as the interactions between social contagion and damage done to ecological systems to measure peer-to-peer spread of environmental stewardship agendas, such as the journey to Veganville.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity