{"title":"Deep Learning aplicado a inspeção visual da presença de um componente de conjunto de eixo","authors":"Lucas Ferreira Luchi, Andre Gustavo Adami","doi":"10.18226/23185279.v8iss2p135","DOIUrl":null,"url":null,"abstract":"identificação ou falta retenção montado eixo veicular partir de imagens. rede neural convolucional foi utilizada para aprender as características das imagens e realizar a classificação. O sistema foi avaliado utilizando uma base de imagens coletada ambiente real de uma Apesar desbalanceamento conjunto de dados, o método produziu resultados máximos sensibilidade, especificidade e F1-score. disso, arquitetura rede Abstract The evolution of industrial processes based on the concepts of smart factory in Industry 4.0 and the need to perform decision-making tasks less human-dependent should increasingly demand the industrial application of machine learning. In this sense, this work proposes the use deep learning to identify the presence or lack of a retaining ring at a vehicle axis end from images. A convolutional neural network was used to learn features from images e to perform classification. The system was evaluated using a dataset of images collected in a real industrial environment. Despite the dataset imbalance, the method yielded maximum results in sensitivity, specificity and F1-score. Thereafter, the neural network architecture was optimized (90% reduction of the number of parameters) to increase computational efficiency.","PeriodicalId":21696,"journal":{"name":"Scientia cum Industria","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia cum Industria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18226/23185279.v8iss2p135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
identificação ou falta retenção montado eixo veicular partir de imagens. rede neural convolucional foi utilizada para aprender as características das imagens e realizar a classificação. O sistema foi avaliado utilizando uma base de imagens coletada ambiente real de uma Apesar desbalanceamento conjunto de dados, o método produziu resultados máximos sensibilidade, especificidade e F1-score. disso, arquitetura rede Abstract The evolution of industrial processes based on the concepts of smart factory in Industry 4.0 and the need to perform decision-making tasks less human-dependent should increasingly demand the industrial application of machine learning. In this sense, this work proposes the use deep learning to identify the presence or lack of a retaining ring at a vehicle axis end from images. A convolutional neural network was used to learn features from images e to perform classification. The system was evaluated using a dataset of images collected in a real industrial environment. Despite the dataset imbalance, the method yielded maximum results in sensitivity, specificity and F1-score. Thereafter, the neural network architecture was optimized (90% reduction of the number of parameters) to increase computational efficiency.