A. Maltsev, I. Bolotin, A. Lomayev, A. Pudeyev, Maxim Danchenko
{"title":"User mobility impact on millimeter-wave system performance","authors":"A. Maltsev, I. Bolotin, A. Lomayev, A. Pudeyev, Maxim Danchenko","doi":"10.1109/EUCAP.2016.7481505","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the mobility effects impact on the millimeter-wave (mmWave) communication system performance. At the first step we introduce the mobility model on the example of the pedestrian motion and discuss its parameters for different environments. The impact of mobility on the system performance is estimated by comparison of channel properties vs. mmWave IEEE 802.11ad system parameters. The considered channel characteristics are calculated on the base of the Quasi-Deterministic (Q-D) channel model developed in MiWEBA project and available experimental measurement data. It is shown that mobile pedestrian channel is frequency-selective but stationary on the signal frame duration. The long-term mobility impact on the communication system performance is investigated on the PHY layer for signal bandwidths 500-2000 MHz. It is demonstrated that the system with wider bandwidth demonstrates 2-4 dB gain over the narrow-band one.","PeriodicalId":6509,"journal":{"name":"2016 10th European Conference on Antennas and Propagation (EuCAP)","volume":"19 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUCAP.2016.7481505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper we investigate the mobility effects impact on the millimeter-wave (mmWave) communication system performance. At the first step we introduce the mobility model on the example of the pedestrian motion and discuss its parameters for different environments. The impact of mobility on the system performance is estimated by comparison of channel properties vs. mmWave IEEE 802.11ad system parameters. The considered channel characteristics are calculated on the base of the Quasi-Deterministic (Q-D) channel model developed in MiWEBA project and available experimental measurement data. It is shown that mobile pedestrian channel is frequency-selective but stationary on the signal frame duration. The long-term mobility impact on the communication system performance is investigated on the PHY layer for signal bandwidths 500-2000 MHz. It is demonstrated that the system with wider bandwidth demonstrates 2-4 dB gain over the narrow-band one.