Anti-diabetic Efficacy of Silver Nanoparticles Biosynthe-sized from Marine Red Seaweed Halymenia porphyroides Boergesen on Alloxan Stimulated Hyperglycemic Activity in Rats

V. Manam, S. Murugesan
{"title":"Anti-diabetic Efficacy of Silver Nanoparticles Biosynthe-sized from Marine Red Seaweed Halymenia porphyroides Boergesen on Alloxan Stimulated Hyperglycemic Activity in Rats","authors":"V. Manam, S. Murugesan","doi":"10.37285/ijpsn.2021.14.5.8","DOIUrl":null,"url":null,"abstract":"The assessment of silver nanoparticles biosynthesized and characterized using UV-Spec, FTIR, XRD, TGA, SEM, TEM from marine red seaweed Halymenia porphyroides have been evaluated for its anti-hyperglycemic activity in vivo. The anti-diabetic efficacy of the biosynthesized silver nanoparticles from marine red seaweed Halymenia porphyroides was studied by chemically inducing diabetes in the experimental Wistar albino rats through Alloxan monohydrate, which ultimately results in hyperglycemia at a dosage of 50 mg/kg body weight given orally for about 28 days. The outcome of the results was estimated by various biochemical parameters from the treatment group with silver nanoparticle (50 mg/Kg i.p) biosynthesized from Halymenia porphyroides. The anti-diabetic efficacy of the treatment group showed a decrease in the levels of blood glucose levels, total cholesterol, triglycerides, low-density lipoprotein, and phospholipids whereas the body weight and HDL increase was observed. The histopathological evaluation of the pancreas of the treated group of animals revealed the restoration and regeneration of β-cells of the pancreas with moderate swelling as compared to that of the chemically induced alloxan diabetic group of animals.   ","PeriodicalId":14382,"journal":{"name":"International Journal of Pharmaceutical Sciences and Nanotechnology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutical Sciences and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ijpsn.2021.14.5.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The assessment of silver nanoparticles biosynthesized and characterized using UV-Spec, FTIR, XRD, TGA, SEM, TEM from marine red seaweed Halymenia porphyroides have been evaluated for its anti-hyperglycemic activity in vivo. The anti-diabetic efficacy of the biosynthesized silver nanoparticles from marine red seaweed Halymenia porphyroides was studied by chemically inducing diabetes in the experimental Wistar albino rats through Alloxan monohydrate, which ultimately results in hyperglycemia at a dosage of 50 mg/kg body weight given orally for about 28 days. The outcome of the results was estimated by various biochemical parameters from the treatment group with silver nanoparticle (50 mg/Kg i.p) biosynthesized from Halymenia porphyroides. The anti-diabetic efficacy of the treatment group showed a decrease in the levels of blood glucose levels, total cholesterol, triglycerides, low-density lipoprotein, and phospholipids whereas the body weight and HDL increase was observed. The histopathological evaluation of the pancreas of the treated group of animals revealed the restoration and regeneration of β-cells of the pancreas with moderate swelling as compared to that of the chemically induced alloxan diabetic group of animals.   
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋红藻生物合成纳米银对四氧嘧啶刺激大鼠高血糖活性的抑制作用
利用紫外光谱(UV-Spec)、红外光谱(FTIR)、x射线衍射(XRD)、热重分析(TGA)、扫描电镜(SEM)、透射电镜(TEM)等方法对从紫菜中合成的纳米银进行了体内抗高血糖活性评价。以紫菜为原料合成银纳米粒子,通过四氧嘧啶一水诱导实验性Wistar白化大鼠发生糖尿病,并以50 mg/kg体重的剂量口服,持续约28 d,观察其抗糖尿病效果。以卟啉Halymenia porphyroides生物合成纳米银颗粒(50 mg/Kg i.p)处理组的各项生化参数来评价结果。治疗组的血糖、总胆固醇、甘油三酯、低密度脂蛋白和磷脂水平均有所下降,而体重和高密度脂蛋白水平则有所增加。与化学诱导的四氧嘧啶糖尿病组动物相比,治疗组动物胰腺的组织病理学评估显示胰腺β细胞的恢复和再生,并伴有中度肿胀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Recent Advancement of Microneedle Technique in Diagnosis and Therapy of Diseases Development of nanoparticles for the Novel anticancer therapeutic agents for Acute Myeloid Leukemia Formulation Development and Evaluation of Dry Adsorbed Nanoparticles of Curcumin and Piperine Dual Drug Loaded Nanostructured Lipid Carriers Phytochemical Screening, Analgesic and Anti-Inflammatory Activity of the Ethanol Extract of the Cnidoscolus Phyllacanthus Leaves Investigation of In-Vitro Antidiabetic Study, Antioxidant Activity and Anthelminthic Property of Various Extracts of Bitter Cumin Seeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1