Surface Line Integral Convolution-Based Vortex Detection Using Computer Vision

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computing and Information Science in Engineering Pub Date : 2023-01-11 DOI:10.1115/1.4056660
Hazem Ashor Amran Abolholl, Tom-Robin Teschner, I. Moulitsas
{"title":"Surface Line Integral Convolution-Based Vortex Detection Using Computer Vision","authors":"Hazem Ashor Amran Abolholl, Tom-Robin Teschner, I. Moulitsas","doi":"10.1115/1.4056660","DOIUrl":null,"url":null,"abstract":"\n Vortex cores in fluid mechanics are easy to visualise, yet difficult to detect numerically. Precise knowledge of these allow fluid dynamics researchers to study complex flow structures and allow for a better understanding of the turbulence transition process and the development and evolution of flow instabilities, to name but a few relevant areas. Various approaches such as the Q, delta and swirling strength criterion have been proposed to visualise vortical flows and these approaches can be used to detect vortex core locations. Using these methods can resulted in spuriously detected vortex cores and which can be balanced by a cut-off filter, making these methods lack robustness. To overcome this shortcoming, we propose a new approach using convolutional neural networks to detect flow structures directly from streamline plots, using the line integral convolution method. We show that our computer vision-based approach is able to reduce the number of false positives and negatives while removing the need for a cut-off. We validate our approach using the Taylor-Green vortex problem to generate input images for our network. We show that with an increasing number of images used for training, we are able to monotonically reduce the number of false positives and negatives. We then apply our trained network to a different flow problem where vortices are still reliably detected. Thus, our study presents a robust approach that allows for reliable vortex detection which is applicable to a wide range of flow scenarios.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"66 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056660","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Vortex cores in fluid mechanics are easy to visualise, yet difficult to detect numerically. Precise knowledge of these allow fluid dynamics researchers to study complex flow structures and allow for a better understanding of the turbulence transition process and the development and evolution of flow instabilities, to name but a few relevant areas. Various approaches such as the Q, delta and swirling strength criterion have been proposed to visualise vortical flows and these approaches can be used to detect vortex core locations. Using these methods can resulted in spuriously detected vortex cores and which can be balanced by a cut-off filter, making these methods lack robustness. To overcome this shortcoming, we propose a new approach using convolutional neural networks to detect flow structures directly from streamline plots, using the line integral convolution method. We show that our computer vision-based approach is able to reduce the number of false positives and negatives while removing the need for a cut-off. We validate our approach using the Taylor-Green vortex problem to generate input images for our network. We show that with an increasing number of images used for training, we are able to monotonically reduce the number of false positives and negatives. We then apply our trained network to a different flow problem where vortices are still reliably detected. Thus, our study presents a robust approach that allows for reliable vortex detection which is applicable to a wide range of flow scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于曲面线积分卷积的计算机视觉涡旋检测
流体力学中的涡旋核很容易可视化,但很难用数值方法检测。这些精确的知识使流体动力学研究人员能够研究复杂的流动结构,并允许更好地理解湍流过渡过程和流动不稳定性的发展和演变,仅举几个相关领域。人们提出了各种方法,如Q、delta和旋涡强度准则来可视化旋涡流动,这些方法可用于检测旋涡核心的位置。使用这些方法会导致检测到虚假的涡核,并且可以通过截止滤波器进行平衡,使得这些方法缺乏鲁棒性。为了克服这一缺点,我们提出了一种使用卷积神经网络直接从流线图中检测流结构的新方法,即使用线积分卷积方法。我们表明,我们基于计算机视觉的方法能够减少误报和误报的数量,同时消除了对截止的需要。我们使用泰勒-格林涡旋问题来验证我们的方法,为我们的网络生成输入图像。我们表明,随着用于训练的图像数量的增加,我们能够单调地减少误报和误报的数量。然后,我们将训练好的网络应用于另一个流动问题,其中仍然可以可靠地检测到漩涡。因此,我们的研究提出了一种强大的方法,允许可靠的涡流检测,适用于广泛的流动场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
期刊最新文献
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics Comparative Analysis of CNN Architectures for Automated Knee Segmentation in Medical Imaging: a Performance Evaluation A Novel Approach to Line Clipping Against a Rectangular Window Layered Security Guidance for Data Asset Management in Additive Manufacturing. Algorithm for Detecting Load-Carrying Regions within the Tip Seat of an Indexable Cutting Tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1