Lagrangian multiplier optimization using correlations in residues

Zhenyu Liu, Dongsheng Wang, Junwei Zhou, T. Ikenaga
{"title":"Lagrangian multiplier optimization using correlations in residues","authors":"Zhenyu Liu, Dongsheng Wang, Junwei Zhou, T. Ikenaga","doi":"10.1109/ICASSP.2012.6288099","DOIUrl":null,"url":null,"abstract":"Rate distortion optimization (RDO) algorithm plays the vital role in the up to date hybrid video codec H.264/AVC. The RDO algorithm of H.264/AVC reference software is built up by assuming that the transformed residues are memoryless variables. However, our experiments reveal that, for some sequences, the strong temporal correlations exist in the prediction residues. This paper extends the Lagrangian optimization techniques by modeling the transformed residues as the first-order Markov source and calibrating the distortion model with the piecewise approximation function. The proposed algorithms adjust the Lagrangian multiplier dynamically to improve the overall coding quality. Comprehensive experiments testify that, as compared with the JM reference software, our optimizations can achieve up to 1.875dB coding gain. Moreover, our algorithms posses more robust coding performance and introduce less computational overhead than the Laplace distribution based methods. The inherent short process latency makes it possible to cooperate our algorithms with rate control operation. Last but not least, the proposed approach is also useful for the emerging standard, HEVC.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Rate distortion optimization (RDO) algorithm plays the vital role in the up to date hybrid video codec H.264/AVC. The RDO algorithm of H.264/AVC reference software is built up by assuming that the transformed residues are memoryless variables. However, our experiments reveal that, for some sequences, the strong temporal correlations exist in the prediction residues. This paper extends the Lagrangian optimization techniques by modeling the transformed residues as the first-order Markov source and calibrating the distortion model with the piecewise approximation function. The proposed algorithms adjust the Lagrangian multiplier dynamically to improve the overall coding quality. Comprehensive experiments testify that, as compared with the JM reference software, our optimizations can achieve up to 1.875dB coding gain. Moreover, our algorithms posses more robust coding performance and introduce less computational overhead than the Laplace distribution based methods. The inherent short process latency makes it possible to cooperate our algorithms with rate control operation. Last but not least, the proposed approach is also useful for the emerging standard, HEVC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用残数相关性的拉格朗日乘子优化
速率失真优化(RDO)算法在目前的H.264/AVC混合视频编解码器中起着至关重要的作用。在H.264/AVC参考软件中,假设变换后的残差为无记忆变量,建立了RDO算法。然而,我们的实验表明,对于某些序列,预测残差存在很强的时间相关性。本文扩展了拉格朗日优化技术,将变换后的残数建模为一阶马尔可夫源,并用分段逼近函数对畸变模型进行校正。该算法通过动态调整拉格朗日乘子来提高整体编码质量。综合实验证明,与JM参考软件相比,优化后的编码增益可达1.875dB。此外,与基于拉普拉斯分布的方法相比,我们的算法具有更强的编码性能和更少的计算开销。固有的短进程延迟使得我们的算法可以配合速率控制操作。最后但并非最不重要的是,所提出的方法对新兴标准HEVC也很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1