A Non-parametric Framework for Document Bleed-through Removal

Róisín Rowley-Brooke, François Pitié, A. Kokaram
{"title":"A Non-parametric Framework for Document Bleed-through Removal","authors":"Róisín Rowley-Brooke, François Pitié, A. Kokaram","doi":"10.1109/CVPR.2013.380","DOIUrl":null,"url":null,"abstract":"This paper presents recent work on a new framework for non-blind document bleed-through removal. The framework includes image preprocessing to remove local intensity variations, pixel region classification based on a segmentation of the joint recto-verso intensity histogram and connected component analysis on the subsequent image labelling. Finally restoration of the degraded regions is performed using exemplar-based image in painting. The proposed method is evaluated visually and numerically on a freely available database of 25 scanned manuscript image pairs with ground truth, and is shown to outperform recent non-blind bleed-through removal techniques.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"15 1","pages":"2954-2960"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper presents recent work on a new framework for non-blind document bleed-through removal. The framework includes image preprocessing to remove local intensity variations, pixel region classification based on a segmentation of the joint recto-verso intensity histogram and connected component analysis on the subsequent image labelling. Finally restoration of the degraded regions is performed using exemplar-based image in painting. The proposed method is evaluated visually and numerically on a freely available database of 25 scanned manuscript image pairs with ground truth, and is shown to outperform recent non-blind bleed-through removal techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种非参数化的文档透漏删除框架
本文介绍了一种新的非盲文档透漏删除框架的最新工作。该框架包括去除局部强度变化的图像预处理、基于联合直-反强度直方图分割的像素区域分类以及随后图像标记的连接分量分析。最后,利用基于实例的绘画图像对退化区域进行恢复。该方法在一个包含25个扫描手稿图像对的免费数据库上进行了视觉和数值评估,结果表明该方法优于最近的非盲透血去除技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segment-Tree Based Cost Aggregation for Stereo Matching Event Retrieval in Large Video Collections with Circulant Temporal Encoding Articulated and Restricted Motion Subspaces and Their Signatures Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation Learning Video Saliency from Human Gaze Using Candidate Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1