Experimental Investigation Of Using Latent Thermal Energy Storage System Comprising Of Magnesium Chloride Hexahydrate (MgCl2.6H2O) With Domestic Gas Heater
{"title":"Experimental Investigation Of Using Latent Thermal Energy Storage System Comprising Of Magnesium Chloride Hexahydrate (MgCl2.6H2O) With Domestic Gas Heater","authors":"Fawad Ahmed, A. Waqas","doi":"10.1109/ECE.2019.8921173","DOIUrl":null,"url":null,"abstract":"Thermal energy storage is an active field of research that can be adopted for energy efficiency and conservation in thermal applications on conventional systems. Moreover, they are equally effective to be used with renewable resources to mitigate their intermittency in terms of availability. This paper covers the experimental investigation of the latent thermal energy storage system, in which Magnesium Chloride Hexahydrate (MgCl2.6H2O) was used as thermal energy storage material. Literature lists MgCl2.6H2O as a strong candidate for thermal energy storage in the medium range with melting temperature of 117.5° C and latent heat of 168.6 kJ/kg. Aluminum encapsulation was used with PCM for testing with gas heater. The flame temperature of domestic gas heater ranges from 600 to 800° C, at this temperature the PCM was fully charged in less than 900s and stored about 30 kJ of thermal energy till the final temperature of the material reached to 320° C. In the discharging phase, subcooling was observed and the material released thermal energy to a threshold temperature of 60° C in 930s. This study considered the direct contact TES system.","PeriodicalId":6681,"journal":{"name":"2019 3rd International Conference on Energy Conservation and Efficiency (ICECE)","volume":"56 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Energy Conservation and Efficiency (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECE.2019.8921173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Thermal energy storage is an active field of research that can be adopted for energy efficiency and conservation in thermal applications on conventional systems. Moreover, they are equally effective to be used with renewable resources to mitigate their intermittency in terms of availability. This paper covers the experimental investigation of the latent thermal energy storage system, in which Magnesium Chloride Hexahydrate (MgCl2.6H2O) was used as thermal energy storage material. Literature lists MgCl2.6H2O as a strong candidate for thermal energy storage in the medium range with melting temperature of 117.5° C and latent heat of 168.6 kJ/kg. Aluminum encapsulation was used with PCM for testing with gas heater. The flame temperature of domestic gas heater ranges from 600 to 800° C, at this temperature the PCM was fully charged in less than 900s and stored about 30 kJ of thermal energy till the final temperature of the material reached to 320° C. In the discharging phase, subcooling was observed and the material released thermal energy to a threshold temperature of 60° C in 930s. This study considered the direct contact TES system.