Optimization of Controller Parameters for Energy Saving

Yongling Wu, Kang Li, Ning Li, Shaoyuan Li, Lin Wang
{"title":"Optimization of Controller Parameters for Energy Saving","authors":"Yongling Wu, Kang Li, Ning Li, Shaoyuan Li, Lin Wang","doi":"10.3182/20140824-6-ZA-1003.02361","DOIUrl":null,"url":null,"abstract":"Abstract Among various technologies to tackle the twin challenges of sustainable energy supply and climate change, energy saving through advanced control plays a crucial role in decarbonizing the whole energy system. Modern control technologies, such as optimal control and model predictive control do provide a framework to simultaneously regulate the system performance and limit control energy. However, few have been done so far to exploit the full potential of controller design in reducing the energy consumption while maintaining desirable system performance. This paper investigates the correlations between control energy consumption and system performance using two popular control approaches widely used in the industry, namely the PI control and subspace model predictive control. Our investigation shows that the controller design is a delicate synthesis procedure in achieving better trade-off between system performance and energy saving, and proper choice of values for the control parameters may potentially save a significant amount of energy.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"67 1","pages":"10281-10286"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.02361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Among various technologies to tackle the twin challenges of sustainable energy supply and climate change, energy saving through advanced control plays a crucial role in decarbonizing the whole energy system. Modern control technologies, such as optimal control and model predictive control do provide a framework to simultaneously regulate the system performance and limit control energy. However, few have been done so far to exploit the full potential of controller design in reducing the energy consumption while maintaining desirable system performance. This paper investigates the correlations between control energy consumption and system performance using two popular control approaches widely used in the industry, namely the PI control and subspace model predictive control. Our investigation shows that the controller design is a delicate synthesis procedure in achieving better trade-off between system performance and energy saving, and proper choice of values for the control parameters may potentially save a significant amount of energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向节能的控制器参数优化
在应对可持续能源供应和气候变化双重挑战的各种技术中,通过先进控制实现节能对整个能源系统的脱碳起着至关重要的作用。现代控制技术,如最优控制和模型预测控制,确实提供了同时调节系统性能和限制控制能量的框架。然而,到目前为止,很少有人利用控制器设计的全部潜力来降低能耗,同时保持理想的系统性能。本文采用工业上广泛使用的两种控制方法,即PI控制和子空间模型预测控制,研究了控制能耗与系统性能之间的相关性。我们的研究表明,控制器设计是一个微妙的综合过程,在系统性能和节能之间实现更好的权衡,适当选择控制参数的值可能会节省大量的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control of a Vibrating Axisymmetric Membrane using Piezoelectric Transducers An expert system for freshwater fish-farming industry Platelet count control in immune thrombocytopenic purpura patient: optimum romiplostim dose profile A Hybrid Model of the Akamai Adaptive Streaming Control System Control of an Industrial Scale Bioreactor using a PAT Analyser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1