T. Shivan, Maruf Hossain, R. Doerner, S. Schulz, T. Johansen, S. Boppel, W. Heinrich, V. Krozer
{"title":"A 175 GHz Bandwidth High Linearity Distributed Amplifier in 500 nm InP DHBT Technology","authors":"T. Shivan, Maruf Hossain, R. Doerner, S. Schulz, T. Johansen, S. Boppel, W. Heinrich, V. Krozer","doi":"10.1109/mwsym.2019.8700895","DOIUrl":null,"url":null,"abstract":"This work reports a highly linear and efficient ultra-wideband distributed amplifier in 500 nm transferred-substrate InP DHBT technology. Five unit cells each with a tri-code transistor set provide the ultra-wideband properties of this amplifier. A transistor node of 500 nm is used which has an ft and fmax of 350 and 490 GHz respectively. The measurements show a small-signal gain of 12 dB with a 3-dB bandwidth of near-DC to 175 GHz. For large signal operation, the circuit reaches a 1-dB output compression point, P1dB, of 8.4 dBm at 150 GHz, a saturated output power of approximately 10 dBm, and an associated maximum PAE of 6 %. This is the best linearity as well as the highest saturated output power and PAE reported at this frequency for DAs. The circuit consumes 180 mW DC power only.","PeriodicalId":6720,"journal":{"name":"2019 IEEE MTT-S International Microwave Symposium (IMS)","volume":"06 1","pages":"1253-1256"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mwsym.2019.8700895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This work reports a highly linear and efficient ultra-wideband distributed amplifier in 500 nm transferred-substrate InP DHBT technology. Five unit cells each with a tri-code transistor set provide the ultra-wideband properties of this amplifier. A transistor node of 500 nm is used which has an ft and fmax of 350 and 490 GHz respectively. The measurements show a small-signal gain of 12 dB with a 3-dB bandwidth of near-DC to 175 GHz. For large signal operation, the circuit reaches a 1-dB output compression point, P1dB, of 8.4 dBm at 150 GHz, a saturated output power of approximately 10 dBm, and an associated maximum PAE of 6 %. This is the best linearity as well as the highest saturated output power and PAE reported at this frequency for DAs. The circuit consumes 180 mW DC power only.