Self-absorption of synchrotron radiation in a laser-irradiated plasma

T. Blackburn, A. Macleod, A. Ilderton, B. King, Suo Tang, Mattias Marklund
{"title":"Self-absorption of synchrotron radiation in a laser-irradiated plasma","authors":"T. Blackburn, A. Macleod, A. Ilderton, B. King, Suo Tang, Mattias Marklund","doi":"10.1063/5.0044766","DOIUrl":null,"url":null,"abstract":"Electrons at the surface of a plasma that is irradiated by a laser with intensity in excess of $10^{23}~\\mathrm{W}\\mathrm{cm}^{-2}$ are accelerated so strongly that they emit bursts of synchrotron radiation. Although the combination of high photon and electron density and electromagnetic field strength at the plasma surface makes particle-particle interactions possible, these interactions are usually neglected in simulations of the high-intensity regime. Here we demonstrate an implementation of two such processes: photon absorption and stimulated emission. We show that, for plasmas that are opaque to the laser light, photon absorption would cause complete depletion of the multi-keV region of the synchrotron photon spectrum, unless compensated by stimulated emission. Our results motivate further study of the density dependence of QED phenomena in strong electromagnetic fields.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0044766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Electrons at the surface of a plasma that is irradiated by a laser with intensity in excess of $10^{23}~\mathrm{W}\mathrm{cm}^{-2}$ are accelerated so strongly that they emit bursts of synchrotron radiation. Although the combination of high photon and electron density and electromagnetic field strength at the plasma surface makes particle-particle interactions possible, these interactions are usually neglected in simulations of the high-intensity regime. Here we demonstrate an implementation of two such processes: photon absorption and stimulated emission. We show that, for plasmas that are opaque to the laser light, photon absorption would cause complete depletion of the multi-keV region of the synchrotron photon spectrum, unless compensated by stimulated emission. Our results motivate further study of the density dependence of QED phenomena in strong electromagnetic fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光辐照等离子体中同步辐射的自吸收
等离子体表面的电子被强度超过$10^{23}~\ mathm {W}\ mathm {cm}^{-2}$的激光照射时,会被强烈加速,从而发出同步辐射爆发。虽然等离子体表面的高光子和电子密度与电磁场强度的结合使粒子-粒子相互作用成为可能,但这些相互作用在高强度状态的模拟中通常被忽略。在这里,我们演示了两个这样的过程的实现:光子吸收和受激发射。我们表明,对于激光不透明的等离子体,光子吸收将导致同步加速器光子光谱的多kev区域完全耗尽,除非通过受激发射来补偿。我们的结果激发了对强电磁场中QED现象的密度依赖性的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetic simulation of electron cyclotron resonance assisted gas breakdown in split-biased waveguides for ITER collective Thomson scattering diagnostic Topological phases, topological phase transition, and bulk-edge correspondence of magnetized cold plasmas Non-Maxwellianity of electron distributions near Earth's magnetopause Theory of Plasma-Cascade Instability Ion cyclotron parametric turbulence and anomalous convective transport of the inhomogeneous plasma in front of the fast wave antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1