Haokai Zhao, Kevin A. Kam, I. Kymissis, P. Culligan
{"title":"A LoRaWAN-Based Environmental Sensor System for Urban Tree Health Monitoring","authors":"Haokai Zhao, Kevin A. Kam, I. Kymissis, P. Culligan","doi":"10.1109/SENSORS47087.2021.9639788","DOIUrl":null,"url":null,"abstract":"As an important component of the urban ecosystem, trees provide many environmental, social and economic benefits. To help better understand the impact of micro-climate effects on tree health and growth, a LoRaWAN-based environmental sensor system consisting of a soil temperature sensor, a soil moisture sensor, and an air temperature/humidity sensor was developed and tested on Columbia University’s Morningside Campus at the site of a linden tree, which was instrumented with a point dendrometer in order to measure the tree trunk’s radial growth. The use of LoRa technology enabled the system to operate with low-power and to wirelessly communicate with the internet-connected gateway at long distances. The gateway’s coverage was established throughout the entire 480m × 260m area of the campus, with an average received signal strength indicator (RSSI) between -120.0 and -83.0dBm. Ecological and climate data were collected over a 9-day test period of the system. The results show that the air temperature and the air humidity were highly negatively correlated, with a Pearson’s correlation coefficient r=-0.65, P<0.0001. Additionally, the soil and air temperatures were found to be cross correlated, with a time lag of 390mins (or 6.5hrs), and with r=0.33, P<0.0001. From the dendrometer, the tree trunk was found to grow at a rate of about 20.53μm/day. The hourly radial change of the tree diameter was found to be negatively correlated with the air humidity, with r=- 0.21, P<0.01.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"41 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As an important component of the urban ecosystem, trees provide many environmental, social and economic benefits. To help better understand the impact of micro-climate effects on tree health and growth, a LoRaWAN-based environmental sensor system consisting of a soil temperature sensor, a soil moisture sensor, and an air temperature/humidity sensor was developed and tested on Columbia University’s Morningside Campus at the site of a linden tree, which was instrumented with a point dendrometer in order to measure the tree trunk’s radial growth. The use of LoRa technology enabled the system to operate with low-power and to wirelessly communicate with the internet-connected gateway at long distances. The gateway’s coverage was established throughout the entire 480m × 260m area of the campus, with an average received signal strength indicator (RSSI) between -120.0 and -83.0dBm. Ecological and climate data were collected over a 9-day test period of the system. The results show that the air temperature and the air humidity were highly negatively correlated, with a Pearson’s correlation coefficient r=-0.65, P<0.0001. Additionally, the soil and air temperatures were found to be cross correlated, with a time lag of 390mins (or 6.5hrs), and with r=0.33, P<0.0001. From the dendrometer, the tree trunk was found to grow at a rate of about 20.53μm/day. The hourly radial change of the tree diameter was found to be negatively correlated with the air humidity, with r=- 0.21, P<0.01.