{"title":"Suggested Modifications for Bifacial Capacity Testing","authors":"Martin Waters, C. Deline, J. Kemnitz, J. Webber","doi":"10.1109/PVSC40753.2019.9198974","DOIUrl":null,"url":null,"abstract":"Capacity tests such as those described in ASTM 2848 and IEC 61724-2 are widely used during the contracting and acceptance testing of photovoltaic systems. With the increasing deployment of bifacial photovoltaic modules, there is a need to develop a standardized approach to capacity test these systems. Although variability and bias error were inherently higher for the measured capacity of bifacial systems, they could be reduced to a level consistent with the monofacial reference system by appropriate incorporation of rear irradiance—either measured or modeled. Three field installations provided bifacial system capacity that was measured with a mean bias error and standard deviation within 1% over the 2–10-month observation period. Capacity test accuracy could be improved further by using the measured back-of-module temperature and the IEC 61724-2 test method for well curated systems.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"43 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.9198974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Capacity tests such as those described in ASTM 2848 and IEC 61724-2 are widely used during the contracting and acceptance testing of photovoltaic systems. With the increasing deployment of bifacial photovoltaic modules, there is a need to develop a standardized approach to capacity test these systems. Although variability and bias error were inherently higher for the measured capacity of bifacial systems, they could be reduced to a level consistent with the monofacial reference system by appropriate incorporation of rear irradiance—either measured or modeled. Three field installations provided bifacial system capacity that was measured with a mean bias error and standard deviation within 1% over the 2–10-month observation period. Capacity test accuracy could be improved further by using the measured back-of-module temperature and the IEC 61724-2 test method for well curated systems.