S. Lamon, Yiming Wu, Qiming Zhang, Xiaogang Liu, M. Gu
{"title":"Upconversion nanoparticles induce the reduction of graphene oxide for nanoscale optical writing","authors":"S. Lamon, Yiming Wu, Qiming Zhang, Xiaogang Liu, M. Gu","doi":"10.1117/12.2593082","DOIUrl":null,"url":null,"abstract":"Nanoscale optical writing enables high-density optical data storage. However, current techniques usually require high laser beam intensity with high energy consumption and short device lifetime. Upconversion nanoparticles (UCNPs) have shown great potential for high-density optical data storage due to their exceptional luminescence emissions. In addition, UCNPs have enabled low-power STED microscopy. We show that UCNPs can induce the reduction of graphene oxide (GO) at the nanoscale. Dual-beam super-resolution irradiation was used to write features in UCNP-conjugated GO with lateral feature size at the nanoscale and inhibition intensity of <15 MW/cm^2. This approach might offers a convenient and energy-efficient solution for the storage demands in the Data Age.","PeriodicalId":19391,"journal":{"name":"ODS 2021: Industrial Optical Devices and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ODS 2021: Industrial Optical Devices and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoscale optical writing enables high-density optical data storage. However, current techniques usually require high laser beam intensity with high energy consumption and short device lifetime. Upconversion nanoparticles (UCNPs) have shown great potential for high-density optical data storage due to their exceptional luminescence emissions. In addition, UCNPs have enabled low-power STED microscopy. We show that UCNPs can induce the reduction of graphene oxide (GO) at the nanoscale. Dual-beam super-resolution irradiation was used to write features in UCNP-conjugated GO with lateral feature size at the nanoscale and inhibition intensity of <15 MW/cm^2. This approach might offers a convenient and energy-efficient solution for the storage demands in the Data Age.