Santiago Vargas-Baldrich, M. Vásquez, D. Poshyvanyk
{"title":"Automated Tagging of Software Projects Using Bytecode and Dependencies (N)","authors":"Santiago Vargas-Baldrich, M. Vásquez, D. Poshyvanyk","doi":"10.1109/ASE.2015.38","DOIUrl":null,"url":null,"abstract":"Several open and closed source repositories group software systems and libraries to allow members of particular organizations or the open source community to take advantage of them. However, to make this possible, it is necessary to have effective ways of searching and browsing the repositories. Software tagging is the process of assigning terms (i.e., tags or labels) to software assets in order to describe features and internal details, making the task of understanding software easier and potentially browsing and searching through a repository more effective. We present Sally, an automatic software tagging approach that is able to produce meaningful tags for Maven-based software projects by analyzing their bytecode and dependency relations without any special requirements from developers. We compared tags generated by Sally to the ones in two widely used online repositories, and the tags generated by a state-of-the-art categorization approach. The results suggest that Sally is able to generate expressive tags without relying on machine learning-based models.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"49 1","pages":"289-294"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Several open and closed source repositories group software systems and libraries to allow members of particular organizations or the open source community to take advantage of them. However, to make this possible, it is necessary to have effective ways of searching and browsing the repositories. Software tagging is the process of assigning terms (i.e., tags or labels) to software assets in order to describe features and internal details, making the task of understanding software easier and potentially browsing and searching through a repository more effective. We present Sally, an automatic software tagging approach that is able to produce meaningful tags for Maven-based software projects by analyzing their bytecode and dependency relations without any special requirements from developers. We compared tags generated by Sally to the ones in two widely used online repositories, and the tags generated by a state-of-the-art categorization approach. The results suggest that Sally is able to generate expressive tags without relying on machine learning-based models.