{"title":"Unavoidable patterns in locally balanced colourings","authors":"Nina Kamčev, Alp Müyesser","doi":"10.1017/s0963548323000160","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Which patterns must a two-colouring of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline1.png\" />\n\t\t<jats:tex-math>\n$K_n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> contain if each vertex has at least <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline2.png\" />\n\t\t<jats:tex-math>\n$\\varepsilon n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> red and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline3.png\" />\n\t\t<jats:tex-math>\n$\\varepsilon n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> blue neighbours? We show that when <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline4.png\" />\n\t\t<jats:tex-math>\n$\\varepsilon \\gt 1/4$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline5.png\" />\n\t\t<jats:tex-math>\n$K_n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> must contain a complete subgraph on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline6.png\" />\n\t\t<jats:tex-math>\n$\\Omega (\\log n)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> vertices where one of the colours forms a balanced complete bipartite graph.</jats:p>\n\t <jats:p>When <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline7.png\" />\n\t\t<jats:tex-math>\n$\\varepsilon \\leq 1/4$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, this statement is no longer true, as evidenced by the following colouring <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline8.png\" />\n\t\t<jats:tex-math>\n$\\chi$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline9.png\" />\n\t\t<jats:tex-math>\n$K_n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Divide the vertex set into <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline10.png\" />\n\t\t<jats:tex-math>\n$4$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> parts nearly equal in size as <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline11.png\" />\n\t\t<jats:tex-math>\n$V_1,V_2,V_3, V_4$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, and let the blue colour class consist of the edges between <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline12.png\" />\n\t\t<jats:tex-math>\n$(V_1,V_2)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline13.png\" />\n\t\t<jats:tex-math>\n$(V_2,V_3)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline14.png\" />\n\t\t<jats:tex-math>\n$(V_3,V_4)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, and the edges contained inside <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline15.png\" />\n\t\t<jats:tex-math>\n$V_2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and inside <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline16.png\" />\n\t\t<jats:tex-math>\n$V_3$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Surprisingly, we find that this obstruction is unique in the following sense. Any two-colouring of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline17.png\" />\n\t\t<jats:tex-math>\n$K_n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> in which each vertex has at least <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline18.png\" />\n\t\t<jats:tex-math>\n$\\varepsilon n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> red and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline19.png\" />\n\t\t<jats:tex-math>\n$\\varepsilon n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> blue neighbours (with <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline20.png\" />\n\t\t<jats:tex-math>\n$\\varepsilon \\gt 0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>) contains a vertex set <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline21.png\" />\n\t\t<jats:tex-math>\n$S$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of order <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline22.png\" />\n\t\t<jats:tex-math>\n$\\Omega _{\\varepsilon }(\\log n)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> on which one colour class forms a balanced complete bipartite graph, or which has the same colouring as <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline23.png\" />\n\t\t<jats:tex-math>\n$\\chi$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>.</jats:p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Which patterns must a two-colouring of
$K_n$
contain if each vertex has at least
$\varepsilon n$
red and
$\varepsilon n$
blue neighbours? We show that when
$\varepsilon \gt 1/4$
,
$K_n$
must contain a complete subgraph on
$\Omega (\log n)$
vertices where one of the colours forms a balanced complete bipartite graph.When
$\varepsilon \leq 1/4$
, this statement is no longer true, as evidenced by the following colouring
$\chi$
of
$K_n$
. Divide the vertex set into
$4$
parts nearly equal in size as
$V_1,V_2,V_3, V_4$
, and let the blue colour class consist of the edges between
$(V_1,V_2)$
,
$(V_2,V_3)$
,
$(V_3,V_4)$
, and the edges contained inside
$V_2$
and inside
$V_3$
. Surprisingly, we find that this obstruction is unique in the following sense. Any two-colouring of
$K_n$
in which each vertex has at least
$\varepsilon n$
red and
$\varepsilon n$
blue neighbours (with
$\varepsilon \gt 0$
) contains a vertex set
$S$
of order
$\Omega _{\varepsilon }(\log n)$
on which one colour class forms a balanced complete bipartite graph, or which has the same colouring as
$\chi$
.