A Computationally Efficient Approach for the Simulation of Silicon Anodes in Lithium-Ion Cells

R. Webb, Xiao-liang Chen, S. Mazumder, M. Canova
{"title":"A Computationally Efficient Approach for the Simulation of Silicon Anodes in Lithium-Ion Cells","authors":"R. Webb, Xiao-liang Chen, S. Mazumder, M. Canova","doi":"10.1115/imece2022-96150","DOIUrl":null,"url":null,"abstract":"\n Silicon has emerged as a frontrunner for next generation anode materials due to its high theoretical gravimetric capacity (∼4200 mAh g-1). The presence of volume changes and stress in silicon anodes introduces strong, nonlinear couplings with the lithiation and delithiation process, requiring a significant increase in the complexity of the mathematical framework describing its behavior.\n A mathematical description of the multiphysics coupling process is presented, requiring the simultaneous solution of the spherical diffusion equations for a binary system with volume change and stress applied to a representative particle. The resulting model description is in the form of a nonlinear set of index-2 Partial Differential and Algebraic Equations (PDAEs).\n This paper proposes a computationally efficient approach to solve the PDAE system, with the objective of predicting the lithium concentration, volume change, and stress generation during galvanostatic charge and discharge conditions. A semi-explicit scheme is proposed to reformulate the original system into decoupled sets of nonlinear ordinary differential equations and nonlinear algebraic equations. After a grid sensitivity analysis in the space and time domains, the proposed approach results into a computationally efficient implementation that ensures the numerical accuracy in solving this problem, for use in lithium-ion battery control and estimation applications.\n This study shows that a semi-explicit scheme can produce results at a rate 2.5–3.5 times faster with comparable accuracy when compared to traditional fully implicit solution methods. Limiting the number of Newton iterations in the semi-explicit scheme further reduces the semi-explicit computation time by 25 minutes.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-96150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon has emerged as a frontrunner for next generation anode materials due to its high theoretical gravimetric capacity (∼4200 mAh g-1). The presence of volume changes and stress in silicon anodes introduces strong, nonlinear couplings with the lithiation and delithiation process, requiring a significant increase in the complexity of the mathematical framework describing its behavior. A mathematical description of the multiphysics coupling process is presented, requiring the simultaneous solution of the spherical diffusion equations for a binary system with volume change and stress applied to a representative particle. The resulting model description is in the form of a nonlinear set of index-2 Partial Differential and Algebraic Equations (PDAEs). This paper proposes a computationally efficient approach to solve the PDAE system, with the objective of predicting the lithium concentration, volume change, and stress generation during galvanostatic charge and discharge conditions. A semi-explicit scheme is proposed to reformulate the original system into decoupled sets of nonlinear ordinary differential equations and nonlinear algebraic equations. After a grid sensitivity analysis in the space and time domains, the proposed approach results into a computationally efficient implementation that ensures the numerical accuracy in solving this problem, for use in lithium-ion battery control and estimation applications. This study shows that a semi-explicit scheme can produce results at a rate 2.5–3.5 times faster with comparable accuracy when compared to traditional fully implicit solution methods. Limiting the number of Newton iterations in the semi-explicit scheme further reduces the semi-explicit computation time by 25 minutes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池硅阳极模拟的高效计算方法
硅因其高理论重量容量(~ 4200 mAh g-1)而成为下一代阳极材料的领跑者。硅阳极中存在的体积变化和应力引入了与锂化和衰减过程的强非线性耦合,这需要显著增加描述其行为的数学框架的复杂性。给出了一个多物理场耦合过程的数学描述,该过程要求同时求解具有体积变化和具有代表性的粒子施加应力的二元系统的球面扩散方程。所得到的模型描述是一组非线性的指标-2偏微分和代数方程(PDAEs)。本文提出了一种计算效率高的方法来求解PDAE系统,目的是预测恒流充放电条件下锂离子浓度、体积变化和应力产生。提出了一种半显式格式,将原系统转化为非线性常微分方程和非线性代数方程的解耦集。在空间和时间域中进行网格灵敏度分析后,所提出的方法得到了计算效率高的实现,确保了解决该问题的数值精度,可用于锂离子电池控制和估计应用。本研究表明,与传统的全隐式解决方法相比,半显式方案可以以2.5-3.5倍的速度产生结果,并具有相当的精度。在半显式方案中限制牛顿迭代的次数进一步减少了半显式计算时间25分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ammonia for Industrial Combustion A Method to Account for the Effects of Thermal Osmosis in PEM Fuel Cells Optimization of Supercritical CO2 Cycle Combined With ORC for Waste Heat Recovery Improving the Yield of Biodiesel Production Using Waste Vegetable Oil Considering the Free Fatty Acid Content Flame Propagation Analysis of Anhydrous and Hydrous Ethanol in an Optical Spark Ignition Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1