Тагир Пшуков, Tagir Pshukov, Мурат Османович Мамчуев, M. Mamchuev
{"title":"Approximate Solution for Squaring the Circle Problem","authors":"Тагир Пшуков, Tagir Pshukov, Мурат Османович Мамчуев, M. Mamchuev","doi":"10.12737/ARTICLE_5C21F593838774.44754853","DOIUrl":null,"url":null,"abstract":"It is known that squaring the circle (the problem consisting in construction of a square with the same area as a given circle), together with duplication of cube and angle trisection, is one of the most famous unsolv able problems of constructive geometry for construction with compass and straightedge. The solution of squaring the circle problem is reduced to the straightening of the circle, that is, to the construction of a segment equal in length to the circle, and its insolvability is connected with the pi character transcendence. In this paper, the limiting case of one of Christian Huygens theorems, which establishes an estimate for length of circumference of a circle through perimeters of regular polygons inscribed in circle and circumscribed about it, is proved. On this basis has been proposed and justified an approximate method for squaring the circle problem solving, which allows consistently construct arbitrarily exact solutions of the problem. We will approximate an arc of a circle whose radius is a multiple of the given circle’s radius, with the help of a segment which is parallel to a shrinking it chord, and then will increase or decrease this segment in the required number of times, so that the resulting segment’s length would be approximately equal to half of the given circle’s circumference. The approximation accuracy will be the higher the smaller arc of the circle we will consider. But possibilities of real tools are limited, and not suitable for both too small and too large drawing scales. In order to cope with this problem, an algorithm for scaled approximation has been proposed, in which it is sufficient to increase (or reduce) the drawing fragment, so that all the time sta y within the sheet of the same size. Perhaps this approach will be useful for other constructions, including the exact ones, where it is necessary to come to very large or vice versa very small drawings’ dimensions.","PeriodicalId":12604,"journal":{"name":"Geometry & Graphics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12737/ARTICLE_5C21F593838774.44754853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that squaring the circle (the problem consisting in construction of a square with the same area as a given circle), together with duplication of cube and angle trisection, is one of the most famous unsolv able problems of constructive geometry for construction with compass and straightedge. The solution of squaring the circle problem is reduced to the straightening of the circle, that is, to the construction of a segment equal in length to the circle, and its insolvability is connected with the pi character transcendence. In this paper, the limiting case of one of Christian Huygens theorems, which establishes an estimate for length of circumference of a circle through perimeters of regular polygons inscribed in circle and circumscribed about it, is proved. On this basis has been proposed and justified an approximate method for squaring the circle problem solving, which allows consistently construct arbitrarily exact solutions of the problem. We will approximate an arc of a circle whose radius is a multiple of the given circle’s radius, with the help of a segment which is parallel to a shrinking it chord, and then will increase or decrease this segment in the required number of times, so that the resulting segment’s length would be approximately equal to half of the given circle’s circumference. The approximation accuracy will be the higher the smaller arc of the circle we will consider. But possibilities of real tools are limited, and not suitable for both too small and too large drawing scales. In order to cope with this problem, an algorithm for scaled approximation has been proposed, in which it is sufficient to increase (or reduce) the drawing fragment, so that all the time sta y within the sheet of the same size. Perhaps this approach will be useful for other constructions, including the exact ones, where it is necessary to come to very large or vice versa very small drawings’ dimensions.