Pure-Quartic Solitons from a Dispersion Managed Fibre Laser

A. Runge, Darren D. Hudson, C. Martijn de Sterke, A. Blanco-Redondo
{"title":"Pure-Quartic Solitons from a Dispersion Managed Fibre Laser","authors":"A. Runge, Darren D. Hudson, C. Martijn de Sterke, A. Blanco-Redondo","doi":"10.1109/CLEOE-EQEC.2019.8872276","DOIUrl":null,"url":null,"abstract":"In optical fibre resonators, the balance between anomalous quadratic dispersion and self-phase modulation (SPM) gives rise to optical solitons [1]. These pulses have made a significant impact in a wide range of photonic applications including telecommunications and lasers. However, these conventional soliton-based lasers can only deliver modest pulse energy due to the appearance of Kelly sidebands arising from periodical perturbations in the cavity [2] and a fixed energy-width scaling. Recently, a new class of soliton, arising from the balance of anomalous quartic dispersion and SPM, called pure-quartic soliton (PQS), were observed in a dispersion engineered photonic crystal waveguide [3]. PQSs have huge potential for generating ultrashort pulses with high energy due to their generalized area theorem (E ∼ 1/Δτ3), however they are yet to be observed in fibre platforms [4]. Here we report on the generation of PQS pulses from a passively mode-locked fibre laser incorporating a programmable spectral pulse-shaper that induces a dominant quartic net cavity dispersion. We find that the spectral profile of the generated pulses are in good agreement with the spectral shape of PQSs [3]. We also observe spectral sidebands in this quartic-dispersion cavity, in analogy to the conventional soliton case [2], and find that their positions are in excellent agreement with analytic predictions. These are strong evidences of a novel type of mode-locked laser, the PQS laser, which has the potential to reach dramatically higher energies at short pulse durations than its conventional soliton counterpart [3,4].","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"37 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In optical fibre resonators, the balance between anomalous quadratic dispersion and self-phase modulation (SPM) gives rise to optical solitons [1]. These pulses have made a significant impact in a wide range of photonic applications including telecommunications and lasers. However, these conventional soliton-based lasers can only deliver modest pulse energy due to the appearance of Kelly sidebands arising from periodical perturbations in the cavity [2] and a fixed energy-width scaling. Recently, a new class of soliton, arising from the balance of anomalous quartic dispersion and SPM, called pure-quartic soliton (PQS), were observed in a dispersion engineered photonic crystal waveguide [3]. PQSs have huge potential for generating ultrashort pulses with high energy due to their generalized area theorem (E ∼ 1/Δτ3), however they are yet to be observed in fibre platforms [4]. Here we report on the generation of PQS pulses from a passively mode-locked fibre laser incorporating a programmable spectral pulse-shaper that induces a dominant quartic net cavity dispersion. We find that the spectral profile of the generated pulses are in good agreement with the spectral shape of PQSs [3]. We also observe spectral sidebands in this quartic-dispersion cavity, in analogy to the conventional soliton case [2], and find that their positions are in excellent agreement with analytic predictions. These are strong evidences of a novel type of mode-locked laser, the PQS laser, which has the potential to reach dramatically higher energies at short pulse durations than its conventional soliton counterpart [3,4].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
色散管理光纤激光器中的纯四次孤子
在光纤谐振腔中,反常二次色散和自相位调制(SPM)之间的平衡产生了光孤子[1]。这些脉冲在包括电信和激光在内的广泛光子应用中产生了重大影响。然而,这些传统的基于孤子的激光器只能提供适度的脉冲能量,这是由于腔[2]中的周期性扰动和固定的能量宽度缩放引起的凯利边带的出现。近年来,在色散工程光子晶体波导[3]中发现了一类由反常四次色散和SPM平衡产生的新孤子,称为纯四次孤子(PQS)。由于其广义面积定理(E ~ 1/Δτ3), PQSs具有产生高能量超短脉冲的巨大潜力,但它们尚未在光纤平台[4]中被观察到。在这里,我们报道了被动锁模光纤激光器产生PQS脉冲,该激光器采用可编程光谱脉冲整形器,诱导主导四次净腔色散。我们发现产生的脉冲的光谱轮廓与pqs[3]的光谱形状很好地吻合。我们还观察到这种四粒子色散腔中的光谱边带,与传统孤子情况[2]类似,并发现它们的位置与分析预测非常吻合。这些都是一种新型锁模激光器的有力证据,即PQS激光器,它有可能在短脉冲持续时间内达到比传统孤子更高的能量[3,4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tapered Multi-Section Superluminescent Diode with Tunable Spectral Asymmetry between Narrow and Wide Facet Outputs A Spectrally Resolved Single-Shot Wavefront Sensor for Broadband High-Harmonic Generation Sources Laser Engineered Surface Structures for Custom Design of Secondary Electron Yield Spectral Correlations in Radiation of Random Distributed Feedback Raman Fiber Laser Optically Driven Attosecond Electron Dynamics in III-V Semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1