A. Runge, Darren D. Hudson, C. Martijn de Sterke, A. Blanco-Redondo
{"title":"Pure-Quartic Solitons from a Dispersion Managed Fibre Laser","authors":"A. Runge, Darren D. Hudson, C. Martijn de Sterke, A. Blanco-Redondo","doi":"10.1109/CLEOE-EQEC.2019.8872276","DOIUrl":null,"url":null,"abstract":"In optical fibre resonators, the balance between anomalous quadratic dispersion and self-phase modulation (SPM) gives rise to optical solitons [1]. These pulses have made a significant impact in a wide range of photonic applications including telecommunications and lasers. However, these conventional soliton-based lasers can only deliver modest pulse energy due to the appearance of Kelly sidebands arising from periodical perturbations in the cavity [2] and a fixed energy-width scaling. Recently, a new class of soliton, arising from the balance of anomalous quartic dispersion and SPM, called pure-quartic soliton (PQS), were observed in a dispersion engineered photonic crystal waveguide [3]. PQSs have huge potential for generating ultrashort pulses with high energy due to their generalized area theorem (E ∼ 1/Δτ3), however they are yet to be observed in fibre platforms [4]. Here we report on the generation of PQS pulses from a passively mode-locked fibre laser incorporating a programmable spectral pulse-shaper that induces a dominant quartic net cavity dispersion. We find that the spectral profile of the generated pulses are in good agreement with the spectral shape of PQSs [3]. We also observe spectral sidebands in this quartic-dispersion cavity, in analogy to the conventional soliton case [2], and find that their positions are in excellent agreement with analytic predictions. These are strong evidences of a novel type of mode-locked laser, the PQS laser, which has the potential to reach dramatically higher energies at short pulse durations than its conventional soliton counterpart [3,4].","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"37 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In optical fibre resonators, the balance between anomalous quadratic dispersion and self-phase modulation (SPM) gives rise to optical solitons [1]. These pulses have made a significant impact in a wide range of photonic applications including telecommunications and lasers. However, these conventional soliton-based lasers can only deliver modest pulse energy due to the appearance of Kelly sidebands arising from periodical perturbations in the cavity [2] and a fixed energy-width scaling. Recently, a new class of soliton, arising from the balance of anomalous quartic dispersion and SPM, called pure-quartic soliton (PQS), were observed in a dispersion engineered photonic crystal waveguide [3]. PQSs have huge potential for generating ultrashort pulses with high energy due to their generalized area theorem (E ∼ 1/Δτ3), however they are yet to be observed in fibre platforms [4]. Here we report on the generation of PQS pulses from a passively mode-locked fibre laser incorporating a programmable spectral pulse-shaper that induces a dominant quartic net cavity dispersion. We find that the spectral profile of the generated pulses are in good agreement with the spectral shape of PQSs [3]. We also observe spectral sidebands in this quartic-dispersion cavity, in analogy to the conventional soliton case [2], and find that their positions are in excellent agreement with analytic predictions. These are strong evidences of a novel type of mode-locked laser, the PQS laser, which has the potential to reach dramatically higher energies at short pulse durations than its conventional soliton counterpart [3,4].