Smart material (sma)-based actively tuned dynamic vibration absorber for vibration control in real time applications

Yuvaraja Mani, S. Mouleeswaran
{"title":"Smart material (sma)-based actively tuned dynamic vibration absorber for vibration control in real time applications","authors":"Yuvaraja Mani, S. Mouleeswaran","doi":"10.4103/0976-8580.113045","DOIUrl":null,"url":null,"abstract":"Dynamic Vibration Absorber (DVA) can be used as an effective vibration control device. A (DVA) is essentially a secondary mass, attached to an original system via spring and damper. The natural frequency of the DVA is tuned such that it coincides with the frequency of unwanted vibration in the original system. This result in absorbing the inertial energy transferred from the primary structure. This current study aims at developing an actively tuned dynamic vibration absorber with the help of shape memory alloy (SMA) springs in order to attenuate the vibration for a range of excitation frequencies. In this study, the unique property of SMAs temperature-dependent Young's modulus has been used to change the stiffness of the spring actively to control the vibration. Experiments were carried out with SMA-based dynamic vibration absorber to study the effect of reduction in amplitude of vibration of a cantilever structure. A micro controller-based proportionate control system has been developed for timely actuation of SMA and to supply optimum current to the SMA springs, which are connected in parallel. The experimental results show that the SMA-based dynamic vibration absorber is more effective in reducing the amplitude of vibration for a wider frequency range. The effectiveness of the developed SMA-based DVA was checked in real time-piping application, and the results demonstrate that the SMA springs has good potential to be used as vibration control device.","PeriodicalId":53400,"journal":{"name":"Pakistan Journal of Engineering Technology","volume":"3 1","pages":"90"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/0976-8580.113045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dynamic Vibration Absorber (DVA) can be used as an effective vibration control device. A (DVA) is essentially a secondary mass, attached to an original system via spring and damper. The natural frequency of the DVA is tuned such that it coincides with the frequency of unwanted vibration in the original system. This result in absorbing the inertial energy transferred from the primary structure. This current study aims at developing an actively tuned dynamic vibration absorber with the help of shape memory alloy (SMA) springs in order to attenuate the vibration for a range of excitation frequencies. In this study, the unique property of SMAs temperature-dependent Young's modulus has been used to change the stiffness of the spring actively to control the vibration. Experiments were carried out with SMA-based dynamic vibration absorber to study the effect of reduction in amplitude of vibration of a cantilever structure. A micro controller-based proportionate control system has been developed for timely actuation of SMA and to supply optimum current to the SMA springs, which are connected in parallel. The experimental results show that the SMA-based dynamic vibration absorber is more effective in reducing the amplitude of vibration for a wider frequency range. The effectiveness of the developed SMA-based DVA was checked in real time-piping application, and the results demonstrate that the SMA springs has good potential to be used as vibration control device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于智能材料(sma)的主动调谐动态减振器,用于实时振动控制应用
动态减振器(DVA)是一种有效的振动控制装置。A (DVA)本质上是一个次级质量,通过弹簧和阻尼器附着在原始系统上。DVA的固有频率被调谐,使其与原始系统中不需要的振动频率一致。这导致吸收了从初级结构传递的惯性能量。本研究旨在利用形状记忆合金(SMA)弹簧开发一种主动调谐的动态吸振器,以在一定的激励频率范围内衰减振动。在本研究中,sma的杨氏模量随温度变化的独特特性被用来主动改变弹簧的刚度来控制振动。采用基于sma的动态吸振器进行了悬臂结构减振效果的实验研究。设计了一种基于微控制器的比例控制系统,用于及时驱动SMA,并为并联的SMA弹簧提供最佳电流。实验结果表明,基于sma的动态吸振器在较宽的频率范围内具有较好的减振效果。在实时管道应用中验证了基于SMA的DVA的有效性,结果表明SMA弹簧具有良好的振动控制潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
33
审稿时长
16 weeks
期刊最新文献
Evolución de la cultura de la gestión de riesgos en el entorno empresarial colombiano Mejora de la fiabilidad humana de un proceso de envasado Medidas de riesgo en modelos de inventario: ¿determinismo o incertidumbre en la producción sustentable? Prototipo de realidad aumentada orientado al ámbito educativo Web page Content to-from Learning Style of Learner’s Learning Style
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1