COVID Monitoring Framework for Indian Cities

Preetam Debasish Saha Roy, Sangeeta Jayadevan
{"title":"COVID Monitoring Framework for Indian Cities","authors":"Preetam Debasish Saha Roy, Sangeeta Jayadevan","doi":"10.1080/09332480.2021.1981052","DOIUrl":null,"url":null,"abstract":"In this article, we discuss the attempt to synthesize disparate sources of information Non-profit Organizations India Excellence Forum (IEF) and Statistics without Borders (SWB) collaborated to develop a platform that would aid in decision making for different stakeholders. The goal was to leverage pre-existing infectious disease models and COVID-19 related open data to provide relevant monitoring metrics at different granular levels such as States, Districts, City and Wards.","PeriodicalId":88226,"journal":{"name":"Chance (New York, N.Y.)","volume":"18 1","pages":"W73 - W81"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chance (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09332480.2021.1981052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we discuss the attempt to synthesize disparate sources of information Non-profit Organizations India Excellence Forum (IEF) and Statistics without Borders (SWB) collaborated to develop a platform that would aid in decision making for different stakeholders. The goal was to leverage pre-existing infectious disease models and COVID-19 related open data to provide relevant monitoring metrics at different granular levels such as States, Districts, City and Wards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度城市COVID监测框架
在本文中,我们讨论了综合不同信息来源的尝试,非营利组织印度卓越论坛(IEF)和无国界统计组织(SWB)合作开发了一个平台,可以帮助不同利益相关者做出决策。目标是利用已有的传染病模型和与COVID-19相关的开放数据,提供州、区、市和病房等不同粒度级别的相关监测指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple discoveries in causal inference: LATE for the party. Bayes Factors for Forensic Decision Analyses with R Three Welcome Arrivals for 2023: 1. Florence Nightingale Bayesian Probability for Babies Fresh Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1