Reproduced Computational Results Report for “Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing”

C. Balos
{"title":"Reproduced Computational Results Report for “Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing”","authors":"C. Balos","doi":"10.1145/3480936","DOIUrl":null,"url":null,"abstract":"The article titled “Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing” by Anzt et al. presents a modern, linear operator centric, C++ library for sparse linear algebra. Experimental results in the article demonstrate that Ginkgo is a flexible and user-friendly framework capable of achieving high-performance on state-of-the-art GPU architectures. In this report, the Ginkgo library is installed and a subset of the experimental results are reproduced. Specifically, the experiment that shows the achieved memory bandwidth of the Ginkgo Krylov linear solvers on NVIDIA A100 and AMD MI100 GPUs is redone and the results are compared to what presented in the published article. Upon completion of the comparison, the published results are deemed reproducible.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"149 1","pages":"1 - 7"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3480936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article titled “Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing” by Anzt et al. presents a modern, linear operator centric, C++ library for sparse linear algebra. Experimental results in the article demonstrate that Ginkgo is a flexible and user-friendly framework capable of achieving high-performance on state-of-the-art GPU architectures. In this report, the Ginkgo library is installed and a subset of the experimental results are reproduced. Specifically, the experiment that shows the achieved memory bandwidth of the Ginkgo Krylov linear solvers on NVIDIA A100 and AMD MI100 GPUs is redone and the results are compared to what presented in the published article. Upon completion of the comparison, the published results are deemed reproducible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“银杏:用于高性能计算的现代线性算子代数框架”的再现计算结果报告
Anzt等人的文章“Ginkgo:用于高性能计算的现代线性算子代数框架”提供了一个现代的、以线性算子为中心的、用于稀疏线性代数的c++库。本文的实验结果表明,Ginkgo是一个灵活且用户友好的框架,能够在最先进的GPU架构上实现高性能。在本报告中,安装了银杏库并复制了实验结果的一个子集。具体来说,我们重新做了Ginkgo Krylov线性解算器在NVIDIA A100和AMD MI100 gpu上实现的内存带宽的实验,并将结果与已发表的文章进行了比较。在完成比较后,发表的结果被认为是可重复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1