Yang Cao , Yinhua Wan , Chulong Chen , Jianquan Luo
{"title":"A novel acid resistant thin-film composite nanofiltration membrane with polyurea enhanced dually charged separation layer","authors":"Yang Cao , Yinhua Wan , Chulong Chen , Jianquan Luo","doi":"10.1016/j.memlet.2021.100002","DOIUrl":null,"url":null,"abstract":"<div><p>Fabricating acid resistant nanofiltration (NF) membranes with precise solute separation performance is highly demanded for acidic wastewater treatment but remains a challenge. Herein, we propose a facile strategy for preparing dually charged acid resistant NF membranes with both high cations and anions rejections via a two-layer reverse interfacial polymerization (r-IP) process. Organic monomers of trimesoyl chloride (TMC) and 1,4-phenylene diisocyanate (PPDI) are firstly applied to react with 3-aminobenzenesulfonamide (ABSA) to construct a negatively charged loose intermediate layer, followed by the r-IP of TMC/PPDI and polyethyleneimine (PEI) to engineer a dense positively charged top layer. The highly cross-linked polyurea (PU) formed by isocyanate and amine leads to an enhanced size sieving effect, and the well-arranged dually charged layer endows the membrane stronger electrostatic exclusion. The resultant membrane has 97.7% rejection of Na<sub>2</sub>SO<sub>4</sub> and 93.0% of MgCl<sub>2</sub>, and it exhibits fairly high rejections to various heavy metals, as well as impressive long-term stability after exposure to strong acid (10 wt% of H<sub>2</sub>SO<sub>4</sub> for 400 h).</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"1 1","pages":"Article 100002"},"PeriodicalIF":4.9000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000027/pdfft?md5=034af5ee7b614c343cca97866f3e4168&pid=1-s2.0-S2772421221000027-main.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421221000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 11
Abstract
Fabricating acid resistant nanofiltration (NF) membranes with precise solute separation performance is highly demanded for acidic wastewater treatment but remains a challenge. Herein, we propose a facile strategy for preparing dually charged acid resistant NF membranes with both high cations and anions rejections via a two-layer reverse interfacial polymerization (r-IP) process. Organic monomers of trimesoyl chloride (TMC) and 1,4-phenylene diisocyanate (PPDI) are firstly applied to react with 3-aminobenzenesulfonamide (ABSA) to construct a negatively charged loose intermediate layer, followed by the r-IP of TMC/PPDI and polyethyleneimine (PEI) to engineer a dense positively charged top layer. The highly cross-linked polyurea (PU) formed by isocyanate and amine leads to an enhanced size sieving effect, and the well-arranged dually charged layer endows the membrane stronger electrostatic exclusion. The resultant membrane has 97.7% rejection of Na2SO4 and 93.0% of MgCl2, and it exhibits fairly high rejections to various heavy metals, as well as impressive long-term stability after exposure to strong acid (10 wt% of H2SO4 for 400 h).