Aliu A. Adeleke , Muthu Kumaran Gnanamani , Michela Martinelli , Burtron H. Davis
{"title":"New insights into the catalytic performance of Na-promoted Fe/Al2O3 catalyst in Fischer-Tropsch synthesis","authors":"Aliu A. Adeleke , Muthu Kumaran Gnanamani , Michela Martinelli , Burtron H. Davis","doi":"10.1016/j.clce.2022.100060","DOIUrl":null,"url":null,"abstract":"<div><p>Na in Fe-based catalysts can be used to increase CO conversion and C<sub>2</sub>-C<sub>4</sub> olefins and decrease the conversion of H<sub>2</sub> and C<sub>1</sub> selectivity, but its behaviour at different reaction temperatures is of importance in Fischer-Tropsch synthesis (FTS). The dependency of the C<sub>1</sub> formation rate, the conversions of H<sub>2</sub> and CO, the water-gas shift reaction, the olefins and paraffins of the C<sub>2</sub>-C<sub>4</sub> and C<sub>5</sub>-C<sub>12</sub> hydrocarbons, and C<sub>13+</sub> hydrocarbons on the reaction temperature for prepared Fe/Al<sub>2</sub>O<sub>3</sub> and FeNa/Al<sub>2</sub>O<sub>3</sub> catalysts was evaluated in a tubular fixed-bed reactor. This was done to investigate the effects of Na in Fe-based catalyst at different reaction temperatures (250 – 310 °C). The results show that the effects of Na in Fe-based catalysts to increase CO conversion and decrease H<sub>2</sub> conversion are dependent on the reaction temperature in FTS. The Na-promoted Fe-based catalyst (FeNa/Al<sub>2</sub>O<sub>3</sub>) gave a lower C<sub>1</sub> formation rate at certain lower reaction temperatures (250 °C and 270 °C) compared to the unpromoted Fe-based catalyst (Fe/Al<sub>2</sub>O<sub>3</sub>). The presence of Na in the Fe-based catalyst improved the C<sub>1</sub> formation rate at certain higher reaction temperatures (290 °C and 310 °C). Na was found to hinder the selectivity towards C<sub>2</sub>-C<sub>4</sub> paraffins and C<sub>13+</sub> hydrocarbons, including the oxygenates, and improve the formation of C<sub>2</sub>-C<sub>4</sub> olefins and C<sub>5</sub>-C<sub>12</sub> hydrocarbons at different reaction temperatures.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"3 ","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000584/pdfft?md5=30dc142c415fd0cb7efef831ca110e91&pid=1-s2.0-S2772782322000584-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782322000584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Na in Fe-based catalysts can be used to increase CO conversion and C2-C4 olefins and decrease the conversion of H2 and C1 selectivity, but its behaviour at different reaction temperatures is of importance in Fischer-Tropsch synthesis (FTS). The dependency of the C1 formation rate, the conversions of H2 and CO, the water-gas shift reaction, the olefins and paraffins of the C2-C4 and C5-C12 hydrocarbons, and C13+ hydrocarbons on the reaction temperature for prepared Fe/Al2O3 and FeNa/Al2O3 catalysts was evaluated in a tubular fixed-bed reactor. This was done to investigate the effects of Na in Fe-based catalyst at different reaction temperatures (250 – 310 °C). The results show that the effects of Na in Fe-based catalysts to increase CO conversion and decrease H2 conversion are dependent on the reaction temperature in FTS. The Na-promoted Fe-based catalyst (FeNa/Al2O3) gave a lower C1 formation rate at certain lower reaction temperatures (250 °C and 270 °C) compared to the unpromoted Fe-based catalyst (Fe/Al2O3). The presence of Na in the Fe-based catalyst improved the C1 formation rate at certain higher reaction temperatures (290 °C and 310 °C). Na was found to hinder the selectivity towards C2-C4 paraffins and C13+ hydrocarbons, including the oxygenates, and improve the formation of C2-C4 olefins and C5-C12 hydrocarbons at different reaction temperatures.