{"title":"Effects of Nitric Oxide Application on Antioxidant Enzyme Activities of Pepper Plants under Drought Stress","authors":"Fikret YAŞAR, Özlem ÜZAL","doi":"10.46291/ispecjasvol5iss4pp846-853","DOIUrl":null,"url":null,"abstract":"The purpose of the study was to determine the relationship between the messenger molecule Nitric oxide (NO) and antioxidative enzyme (SOD: Superoxide Dismutase; CAT: Catalase; APX: Ascorbate Peroxidase) activities in some metabolic changes that occur under the effect of drought stress in plants, to determine the possible roles of Nitric Oxide and to obtain complementary information. The experiment conducted in a controlled environment, and plant were cultured in containers containing Hoagland nutrient solution. For drought stress application, 10% Polyethylene Glycol (PEG 6000) was added to the nutrient solution, which is equivalent to -0.40 MPa osmotic potential. Before the drought stress is applied, pepper seedlings of Demre cv were pre-treated with different doses of Sodium Nitroprusside (SNP) and Carboxy-PTIO (potassium salt) (cPTIO) (SNP 0.01, SNP 1, SNP 100 and SNP 0.01 + cPTIO, SNP + cPTIO, SNP 100+ cPTIO). On the 10th day of the drought application, the growth parameters of the plants; the plant fresh weights and their Antioxidative Enzyme Activities (SOD, CAT, APX) were determined. In terms of plant growth parameters, both plant growth and antioxidant anzyme activities of plants pretreated with 0.01 and 1 doses of SNP were lower than the high dose of SNP and the PEG application without pretreatment. The reason for the low enzyme activities in these applications can be attributed to factors such as the excess accumulation of organic acids such as proline in the cells of the plants and the decrease in H2O2 and O-2 levels in the presence of SNP.","PeriodicalId":14680,"journal":{"name":"ISPEC Journal of Agricultural Sciences","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPEC Journal of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46291/ispecjasvol5iss4pp846-853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The purpose of the study was to determine the relationship between the messenger molecule Nitric oxide (NO) and antioxidative enzyme (SOD: Superoxide Dismutase; CAT: Catalase; APX: Ascorbate Peroxidase) activities in some metabolic changes that occur under the effect of drought stress in plants, to determine the possible roles of Nitric Oxide and to obtain complementary information. The experiment conducted in a controlled environment, and plant were cultured in containers containing Hoagland nutrient solution. For drought stress application, 10% Polyethylene Glycol (PEG 6000) was added to the nutrient solution, which is equivalent to -0.40 MPa osmotic potential. Before the drought stress is applied, pepper seedlings of Demre cv were pre-treated with different doses of Sodium Nitroprusside (SNP) and Carboxy-PTIO (potassium salt) (cPTIO) (SNP 0.01, SNP 1, SNP 100 and SNP 0.01 + cPTIO, SNP + cPTIO, SNP 100+ cPTIO). On the 10th day of the drought application, the growth parameters of the plants; the plant fresh weights and their Antioxidative Enzyme Activities (SOD, CAT, APX) were determined. In terms of plant growth parameters, both plant growth and antioxidant anzyme activities of plants pretreated with 0.01 and 1 doses of SNP were lower than the high dose of SNP and the PEG application without pretreatment. The reason for the low enzyme activities in these applications can be attributed to factors such as the excess accumulation of organic acids such as proline in the cells of the plants and the decrease in H2O2 and O-2 levels in the presence of SNP.