{"title":"Autophagy-independent function of Atg8 in lipid droplet dynamics in yeast.","authors":"Yuichiro Maeda, Masahide Oku, Yasuyoshi Sakai","doi":"10.1093/jb/mvw078","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic features of lipid droplets include growth and degradation of the organelle. Autophagy, a system for the transport of cytoplasmic components to be degraded into the lysosome/vacuole, is regarded to be responsible for the degradation of lipid droplets. Atg8 protein in the yeast Saccharomyces cerevisiae is recruited to membrane structures synthesized during autophagy via a lipidation process. In this study, we report a novel function of Atg8 in lipid droplet dynamics. We found that loss of Atg8 specifically resulted in a decrease in the quantity of lipid droplets in cells at stationary phase. This protein was detected in a lipid droplet fraction independent of its lipidation. Loss of Atg8 hemifusion activity also caused a decrease in the quantity of lipid droplets. Consistent with these results, isolated lipid droplets underwent assembly into large clusters when incubated with Atg8 possessing hemifusion activity. The loss of Atg8 did not reduce the quantity of lipid droplets in a mutant defective in lipolysis, another system for lipid droplet degradation, which strongly suggests the function of Atg8 in antagonizing lipolysis. Together these results indicate a specific function of Atg8 in maintaining the quantity of lipid droplets that is independent of its autophagic function.</p>","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"690 1","pages":"339-348"},"PeriodicalIF":4.8000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jb/mvw078","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jb/mvw078","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 11
Abstract
Dynamic features of lipid droplets include growth and degradation of the organelle. Autophagy, a system for the transport of cytoplasmic components to be degraded into the lysosome/vacuole, is regarded to be responsible for the degradation of lipid droplets. Atg8 protein in the yeast Saccharomyces cerevisiae is recruited to membrane structures synthesized during autophagy via a lipidation process. In this study, we report a novel function of Atg8 in lipid droplet dynamics. We found that loss of Atg8 specifically resulted in a decrease in the quantity of lipid droplets in cells at stationary phase. This protein was detected in a lipid droplet fraction independent of its lipidation. Loss of Atg8 hemifusion activity also caused a decrease in the quantity of lipid droplets. Consistent with these results, isolated lipid droplets underwent assembly into large clusters when incubated with Atg8 possessing hemifusion activity. The loss of Atg8 did not reduce the quantity of lipid droplets in a mutant defective in lipolysis, another system for lipid droplet degradation, which strongly suggests the function of Atg8 in antagonizing lipolysis. Together these results indicate a specific function of Atg8 in maintaining the quantity of lipid droplets that is independent of its autophagic function.
期刊介绍:
Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.