{"title":"Vibration Isolation with Spring Supported Concrete Floating Floors on Fitness Centers","authors":"Omer F. Tigli, M. Royvaran","doi":"10.3397/nc_2023_0090","DOIUrl":null,"url":null,"abstract":"Spring-supported concrete floating floors are often used as a high-end solution to mitigate noise and vibration disturbances in fitness centers. Suppliers of these floors typically provide impressive sound test results, but information regarding their low-frequency vibration isolation\n capabilities is scarce. In this study, the authors collected in-situ vibration data from an existing fitness center equipped with a 4-in (102-mm) thick spring-supported concrete floating floor while conducting various activities such as running on a treadmill, dropping a dumbbell, putting\n down a barbell and slamming a medicine ball on the floor. Frequency measurements revealed that entrapped air led to an increase in the natural frequency of the floating floor. The data demonstrated that floating slab effectively isolated noise and high-frequency vibrations, but was not able\n to isolate low-frequency vibrations. Additionally, a finite element model of the structure was developed, incorporating the floating floor and the base structural slab. The model was used to simulate treadmill running and weight drops, and calculated vibration levels were presented as heat\n maps across the entire floor. The model's predictions aligned closely with the actual measurements, demonstrating that vibration analysis based on finite element models is a valuable method to design effective mitigation strategies for fitness centers.","PeriodicalId":19195,"journal":{"name":"Noise & Health","volume":"12 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise & Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3397/nc_2023_0090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spring-supported concrete floating floors are often used as a high-end solution to mitigate noise and vibration disturbances in fitness centers. Suppliers of these floors typically provide impressive sound test results, but information regarding their low-frequency vibration isolation
capabilities is scarce. In this study, the authors collected in-situ vibration data from an existing fitness center equipped with a 4-in (102-mm) thick spring-supported concrete floating floor while conducting various activities such as running on a treadmill, dropping a dumbbell, putting
down a barbell and slamming a medicine ball on the floor. Frequency measurements revealed that entrapped air led to an increase in the natural frequency of the floating floor. The data demonstrated that floating slab effectively isolated noise and high-frequency vibrations, but was not able
to isolate low-frequency vibrations. Additionally, a finite element model of the structure was developed, incorporating the floating floor and the base structural slab. The model was used to simulate treadmill running and weight drops, and calculated vibration levels were presented as heat
maps across the entire floor. The model's predictions aligned closely with the actual measurements, demonstrating that vibration analysis based on finite element models is a valuable method to design effective mitigation strategies for fitness centers.
Noise & HealthAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY-PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
CiteScore
2.10
自引率
14.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍:
Noise and Health is the only International Journal devoted to research on all aspects of noise and its effects on human health. An inter-disciplinary journal for all professions concerned with auditory and non-auditory effects of occupational, environmental, and leisure noise. It aims to provide a forum for presentation of novel research material on a broad range of topics associated with noise pollution, its control and its detrimental effects on hearing and health. It will cover issues from basic experimental science through clinical evaluation and management, technical aspects of noise reduction systems and solutions to environmental issues relating to social and public health policy.