Physically-admissible polarimetric data augmentation for road-scene analysis

Cyprien Ruffino, Rachel Blin, Samia Ainouz, G. Gasso, Romain H'erault, F. Mériaudeau, S. Canu
{"title":"Physically-admissible polarimetric data augmentation for road-scene analysis","authors":"Cyprien Ruffino, Rachel Blin, Samia Ainouz, G. Gasso, Romain H'erault, F. Mériaudeau, S. Canu","doi":"10.48550/arXiv.2206.07431","DOIUrl":null,"url":null,"abstract":"Polarimetric imaging, along with deep learning, has shown improved performances on different tasks including scene analysis. However, its robustness may be questioned because of the small size of the training datasets. Though the issue could be solved by data augmentation, polarization modalities are subject to physical feasibility constraints unaddressed by classical data augmentation techniques. To address this issue, we propose to use CycleGAN, an image translation technique based on deep generative models that solely relies on unpaired data, to transfer large labeled road scene datasets to the polarimetric domain. We design several auxiliary loss terms that, alongside the CycleGAN losses, deal with the physical constraints of polarimetric images. The efficiency of this solution is demonstrated on road scene object detection tasks where generated realistic polarimetric images allow to improve performances on cars and pedestrian detection up to 9%. The resulting constrained CycleGAN is publicly released, allowing anyone to generate their own polarimetric images.","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":"10 1","pages":"103495"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Vis. Image Underst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.07431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polarimetric imaging, along with deep learning, has shown improved performances on different tasks including scene analysis. However, its robustness may be questioned because of the small size of the training datasets. Though the issue could be solved by data augmentation, polarization modalities are subject to physical feasibility constraints unaddressed by classical data augmentation techniques. To address this issue, we propose to use CycleGAN, an image translation technique based on deep generative models that solely relies on unpaired data, to transfer large labeled road scene datasets to the polarimetric domain. We design several auxiliary loss terms that, alongside the CycleGAN losses, deal with the physical constraints of polarimetric images. The efficiency of this solution is demonstrated on road scene object detection tasks where generated realistic polarimetric images allow to improve performances on cars and pedestrian detection up to 9%. The resulting constrained CycleGAN is publicly released, allowing anyone to generate their own polarimetric images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理上允许的偏振数据增强道路场景分析
偏振成像技术与深度学习技术在场景分析等不同任务上的表现都有所改善。然而,由于训练数据集的规模较小,其鲁棒性可能受到质疑。虽然这个问题可以通过数据增强来解决,但极化模式受到物理可行性的限制,这是经典数据增强技术无法解决的。为了解决这个问题,我们建议使用CycleGAN,这是一种基于深度生成模型的图像翻译技术,它只依赖于未配对的数据,将大型标记道路场景数据集转移到极化域。我们设计了几个辅助损耗项,与CycleGAN损耗一起处理偏振图像的物理约束。该解决方案的效率在道路场景物体检测任务中得到了证明,其中生成的逼真偏振图像可以将汽车和行人的检测性能提高9%。由此产生的受限CycleGAN公开发布,允许任何人生成自己的偏振图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time distributed video analytics for privacy-aware person search PAGML: Precise Alignment Guided Metric Learning for sketch-based 3D shape retrieval Robust Teacher: Self-correcting pseudo-label-guided semi-supervised learning for object detection Unpaired sonar image denoising with simultaneous contrastive learning 3DF-FCOS: Small object detection with 3D features based on FCOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1