首页 > 最新文献

Comput. Vis. Image Underst.最新文献

英文 中文
Real-time distributed video analytics for privacy-aware person search 实时分布式视频分析的隐私意识的人的搜索
Pub Date : 2023-09-01 DOI: 10.2139/ssrn.4363661
Bipin Gaikwad, A. Karmakar
{"title":"Real-time distributed video analytics for privacy-aware person search","authors":"Bipin Gaikwad, A. Karmakar","doi":"10.2139/ssrn.4363661","DOIUrl":"https://doi.org/10.2139/ssrn.4363661","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77004565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAGML: Precise Alignment Guided Metric Learning for sketch-based 3D shape retrieval PAGML:用于基于草图的三维形状检索的精确对齐引导度量学习
Pub Date : 2023-08-01 DOI: 10.2139/ssrn.4370100
Shaojin Bai, Jing Bai, Hao-Yu Xu, Jiwen Tuo, Min Liu
{"title":"PAGML: Precise Alignment Guided Metric Learning for sketch-based 3D shape retrieval","authors":"Shaojin Bai, Jing Bai, Hao-Yu Xu, Jiwen Tuo, Min Liu","doi":"10.2139/ssrn.4370100","DOIUrl":"https://doi.org/10.2139/ssrn.4370100","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88994269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unpaired sonar image denoising with simultaneous contrastive learning 同时对比学习的非配对声纳图像去噪
Pub Date : 2023-07-01 DOI: 10.2139/ssrn.4327715
Bo-Jun Zhao, Qiang Zhou, Lijun Huang, Qiang Zhang
{"title":"Unpaired sonar image denoising with simultaneous contrastive learning","authors":"Bo-Jun Zhao, Qiang Zhou, Lijun Huang, Qiang Zhang","doi":"10.2139/ssrn.4327715","DOIUrl":"https://doi.org/10.2139/ssrn.4327715","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79293433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3DF-FCOS: Small object detection with 3D features based on FCOS 3DF-FCOS:基于FCOS的具有3D特征的小目标检测
Pub Date : 2023-07-01 DOI: 10.2139/ssrn.4399361
Xiaobao Yang, Yulong He, Junsheng Wu, Wei Sun, Tianyu Liu, Sugang Ma
{"title":"3DF-FCOS: Small object detection with 3D features based on FCOS","authors":"Xiaobao Yang, Yulong He, Junsheng Wu, Wei Sun, Tianyu Liu, Sugang Ma","doi":"10.2139/ssrn.4399361","DOIUrl":"https://doi.org/10.2139/ssrn.4399361","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79545941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Teacher: Self-correcting pseudo-label-guided semi-supervised learning for object detection 鲁棒教师:用于目标检测的自校正伪标签引导半监督学习
Pub Date : 2023-07-01 DOI: 10.2139/ssrn.4327717
Shijie Li, Junmin Liu, Weilin Shen, Jianyong Sun, Chengli Tan
{"title":"Robust Teacher: Self-correcting pseudo-label-guided semi-supervised learning for object detection","authors":"Shijie Li, Junmin Liu, Weilin Shen, Jianyong Sun, Chengli Tan","doi":"10.2139/ssrn.4327717","DOIUrl":"https://doi.org/10.2139/ssrn.4327717","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75876183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Memory-efficient multi-scale residual dense network for single image rain removal 基于多尺度残差密集网络的单幅图像去雨
Pub Date : 2023-07-01 DOI: 10.2139/ssrn.4327723
Ziyang Zheng, Zhixiang Chen, Shuqi Wang, Wenpeng Wang, Hui Wang
{"title":"Memory-efficient multi-scale residual dense network for single image rain removal","authors":"Ziyang Zheng, Zhixiang Chen, Shuqi Wang, Wenpeng Wang, Hui Wang","doi":"10.2139/ssrn.4327723","DOIUrl":"https://doi.org/10.2139/ssrn.4327723","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84892226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Adversarial anchor-guided feature refinement for adversarial defense 针对对抗防御的对抗性锚制导特征细化
Pub Date : 2023-06-01 DOI: 10.2139/ssrn.4350314
Hakmin Lee, Yonghyun Ro
{"title":"Adversarial anchor-guided feature refinement for adversarial defense","authors":"Hakmin Lee, Yonghyun Ro","doi":"10.2139/ssrn.4350314","DOIUrl":"https://doi.org/10.2139/ssrn.4350314","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76226730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
"Glitch in the Matrix!": A Large Scale Benchmark for Content Driven Audio-Visual Forgery Detection and Localization “黑客帝国中的故障!”内容驱动的视听伪造检测与定位的大规模基准
Pub Date : 2023-05-03 DOI: 10.48550/arXiv.2305.01979
Zhixi Cai, Shreya Ghosh, Tom Gedeon, Abhinav Dhall, Kalin Stefanov, Munawar Hayat
Most deepfake detection methods focus on detecting spatial and/or spatio-temporal changes in facial attributes and are centered around the binary classification task of detecting whether a video is real or fake. This is because available benchmark datasets contain mostly visual-only modifications present in the entirety of the video. However, a sophisticated deepfake may include small segments of audio or audio-visual manipulations that can completely change the meaning of the video content. To addresses this gap, we propose and benchmark a new dataset, Localized Audio Visual DeepFake (LAV-DF), consisting of strategic content-driven audio, visual and audio-visual manipulations. The proposed baseline method, Boundary Aware Temporal Forgery Detection (BA-TFD), is a 3D Convolutional Neural Network-based architecture which effectively captures multimodal manipulations. We further improve (i.e. BA-TFD+) the baseline method by replacing the backbone with a Multiscale Vision Transformer and guide the training process with contrastive, frame classification, boundary matching and multimodal boundary matching loss functions. The quantitative analysis demonstrates the superiority of BA-TFD+ on temporal forgery localization and deepfake detection tasks using several benchmark datasets including our newly proposed dataset. The dataset, models and code are available at https://github.com/ControlNet/LAV-DF.
大多数深度假检测方法专注于检测面部属性的空间和/或时空变化,并围绕检测视频是真还是假的二元分类任务。这是因为可用的基准数据集在整个视频中包含了大部分仅用于视觉的修改。然而,一个复杂的深度伪造可能包括一小段音频或视听操作,这可以完全改变视频内容的含义。为了解决这一差距,我们提出了一个新的数据集,本地化视听深度造假(LAV-DF),由战略内容驱动的音频、视觉和视听操作组成。提出的基线方法,边界感知时间伪造检测(BA-TFD),是一种基于三维卷积神经网络的架构,可以有效捕获多模态操作。我们进一步改进(即BA-TFD+)基线方法,用一个多尺度视觉变压器替换主干,并使用对比、帧分类、边界匹配和多模态边界匹配损失函数来指导训练过程。定量分析证明了BA-TFD+在时间伪造定位和深度伪造检测任务上的优势,包括我们新提出的数据集。数据集、模型和代码可在https://github.com/ControlNet/LAV-DF上获得。
{"title":"\"Glitch in the Matrix!\": A Large Scale Benchmark for Content Driven Audio-Visual Forgery Detection and Localization","authors":"Zhixi Cai, Shreya Ghosh, Tom Gedeon, Abhinav Dhall, Kalin Stefanov, Munawar Hayat","doi":"10.48550/arXiv.2305.01979","DOIUrl":"https://doi.org/10.48550/arXiv.2305.01979","url":null,"abstract":"Most deepfake detection methods focus on detecting spatial and/or spatio-temporal changes in facial attributes and are centered around the binary classification task of detecting whether a video is real or fake. This is because available benchmark datasets contain mostly visual-only modifications present in the entirety of the video. However, a sophisticated deepfake may include small segments of audio or audio-visual manipulations that can completely change the meaning of the video content. To addresses this gap, we propose and benchmark a new dataset, Localized Audio Visual DeepFake (LAV-DF), consisting of strategic content-driven audio, visual and audio-visual manipulations. The proposed baseline method, Boundary Aware Temporal Forgery Detection (BA-TFD), is a 3D Convolutional Neural Network-based architecture which effectively captures multimodal manipulations. We further improve (i.e. BA-TFD+) the baseline method by replacing the backbone with a Multiscale Vision Transformer and guide the training process with contrastive, frame classification, boundary matching and multimodal boundary matching loss functions. The quantitative analysis demonstrates the superiority of BA-TFD+ on temporal forgery localization and deepfake detection tasks using several benchmark datasets including our newly proposed dataset. The dataset, models and code are available at https://github.com/ControlNet/LAV-DF.","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73587194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Self-knowledge distillation based on knowledge transfer from soft to hard examples 基于软实例到硬实例知识转移的自我知识升华
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4261729
Yueyue Tang, Ying Chen, Linbo Xie
{"title":"Self-knowledge distillation based on knowledge transfer from soft to hard examples","authors":"Yueyue Tang, Ying Chen, Linbo Xie","doi":"10.2139/ssrn.4261729","DOIUrl":"https://doi.org/10.2139/ssrn.4261729","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79910790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully synthetic training for image restoration tasks 完全合成训练图像恢复任务
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4176695
Raphaël Achddou, Y. Gousseau, Saïd Ladjal
. In this work, we show that neural networks aimed at solving various image restoration tasks can be successfully trained on fully synthetic data. In order to do so, we rely on a generative model of images, the scaling dead leaves model, which is obtained by superimposing disks whose size distribution is scale-invariant. Pairs of clean and corrupted synthetic images can then be obtained by a careful simulation of the degradation process. We show on various restoration tasks that such a synthetic training yields results that are only slightly inferior to those obtained when the training is performed on large natural image databases. This implies that, for restoration tasks, the geometric contents of natural images can be nailed down to only a simple generative model and a few parameters. This prior can then be used to train neural networks for specific modality, without having to rely on demanding campaigns of natural images acquisition. We demonstrate the feasibility of this approach on difficult restoration tasks, including the denoising of smartphone RAW images and the full development of low-light images.
。在这项工作中,我们表明,旨在解决各种图像恢复任务的神经网络可以在完全合成的数据上成功训练。为了做到这一点,我们依赖于图像的生成模型,即缩放枯叶模型,该模型是通过叠加大小分布是尺度不变的磁盘而得到的。然后,通过仔细模拟降解过程,可以获得干净和损坏的合成图像对。我们在各种恢复任务中表明,这种合成训练产生的结果仅略低于在大型自然图像数据库中执行训练时获得的结果。这意味着,对于恢复任务,自然图像的几何内容可以被确定为只有一个简单的生成模型和几个参数。这种先验可以用来训练特定模态的神经网络,而不必依赖于自然图像获取的苛刻活动。我们证明了这种方法在困难的恢复任务上的可行性,包括智能手机RAW图像的去噪和低光图像的充分开发。
{"title":"Fully synthetic training for image restoration tasks","authors":"Raphaël Achddou, Y. Gousseau, Saïd Ladjal","doi":"10.2139/ssrn.4176695","DOIUrl":"https://doi.org/10.2139/ssrn.4176695","url":null,"abstract":". In this work, we show that neural networks aimed at solving various image restoration tasks can be successfully trained on fully synthetic data. In order to do so, we rely on a generative model of images, the scaling dead leaves model, which is obtained by superimposing disks whose size distribution is scale-invariant. Pairs of clean and corrupted synthetic images can then be obtained by a careful simulation of the degradation process. We show on various restoration tasks that such a synthetic training yields results that are only slightly inferior to those obtained when the training is performed on large natural image databases. This implies that, for restoration tasks, the geometric contents of natural images can be nailed down to only a simple generative model and a few parameters. This prior can then be used to train neural networks for specific modality, without having to rely on demanding campaigns of natural images acquisition. We demonstrate the feasibility of this approach on difficult restoration tasks, including the denoising of smartphone RAW images and the full development of low-light images.","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88386053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Comput. Vis. Image Underst.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1