Automated morphological analysis of clinical language samples

Kyle Gorman, Steven Bedrick, G. Kiss, E. Morley, Rosemary Ingham, Metrah Mohammed, Katina Papadakis, J. V. Santen
{"title":"Automated morphological analysis of clinical language samples","authors":"Kyle Gorman, Steven Bedrick, G. Kiss, E. Morley, Rosemary Ingham, Metrah Mohammed, Katina Papadakis, J. V. Santen","doi":"10.3115/v1/W15-1213","DOIUrl":null,"url":null,"abstract":"Quantitative analysis of clinical language samples is a powerful tool for assessing and screening developmental language impairments, but requires extensive manual transcription, annotation, and calculation, resulting in error-prone results and clinical underutilization. We describe a system that performs automated morphological analysis needed to calculate statistics such as the mean length of utterance in morphemes (MLUM), so that these statistics can be computed directly from orthographic transcripts. Estimates of MLUM computed by this system are closely comparable to those produced by manual annotation. Our system can be used in conjunction with other automated annotation techniques, such as maze detection. This work represents an important first step towards increased automation of language sample analysis, and towards attendant benefits of automation, including clinical greater utilization and reduced variability in care delivery.","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"81 1","pages":"108-116"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Quantitative analysis of clinical language samples is a powerful tool for assessing and screening developmental language impairments, but requires extensive manual transcription, annotation, and calculation, resulting in error-prone results and clinical underutilization. We describe a system that performs automated morphological analysis needed to calculate statistics such as the mean length of utterance in morphemes (MLUM), so that these statistics can be computed directly from orthographic transcripts. Estimates of MLUM computed by this system are closely comparable to those produced by manual annotation. Our system can be used in conjunction with other automated annotation techniques, such as maze detection. This work represents an important first step towards increased automation of language sample analysis, and towards attendant benefits of automation, including clinical greater utilization and reduced variability in care delivery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
临床语言样本的自动形态学分析
临床语言样本的定量分析是评估和筛查发育性语言障碍的有力工具,但需要大量的人工转录、注释和计算,导致结果容易出错和临床未充分利用。我们描述了一个执行自动形态学分析所需的系统,以计算统计数据,如语素中的平均话语长度(MLUM),以便这些统计数据可以直接从正字法转录本中计算出来。该系统计算的MLUM估计值与人工标注的估计值接近。我们的系统可以与其他自动标注技术结合使用,比如迷宫检测。这项工作是朝着提高语言样本分析自动化迈出的重要的第一步,也是朝着自动化带来的好处迈出的重要的第一步,包括临床更大的利用率和减少医疗服务的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection. Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. ScAN: Suicide Attempt and Ideation Events Dataset. ScAN: Suicide Attempt and Ideation Events Dataset Translational NLP: A New Paradigm and General Principles for Natural Language Processing Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1