Non-Destructive Evaluation of Salmon and Tuna Freshness in a Room-Temperature Incubation Environment Using a Portable Visible/Near-Infrared Imaging Spectrometer
{"title":"Non-Destructive Evaluation of Salmon and Tuna Freshness in a Room-Temperature Incubation Environment Using a Portable Visible/Near-Infrared Imaging Spectrometer","authors":"Jinshi Cui, C. Cui","doi":"10.13031/TRANS.13858","DOIUrl":null,"url":null,"abstract":"HighlightsWhile freshness is a critical value of food quality, its assessment requires complex methods, which are costly and time-consuming.In this work, it is demonstrated that spectral responses obtained from a portable VIS/NIR imaging spectrometer can be used to predict food freshness using a CNN-based machine learning algorithm.In the food industry, the method can assess real-time food freshness nondestructively and cost-effectively.Abstract. There has been strong demand for the development of accurate but simple methods to assess the freshness of foods. In this study, a system is proposed to determine the freshness of fish by analyzing the spectral response with a portable visible/near-infrared (VIS/NIR) imaging spectrometer and a convolution neural network (CNN) machine learning algorithm. Spectral response data from salmon and tuna, which were incubated at 25°C, were obtained every minute for 30 h and were categorized into three stages (fresh, likely spoiled, or spoiled) based on the time and pH. Using the obtained spectral data, a CNN-based machine learning algorithm was built to evaluate the freshness of the experimental samples. The accuracy of the spectral data in predicting the freshness was ~84% for salmon and ~88% for tuna. Keywords: CNN, Fish, Freshness, pH, Spectral data, VIS/NIR.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"34 1","pages":"521-527"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the ASABE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/TRANS.13858","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
HighlightsWhile freshness is a critical value of food quality, its assessment requires complex methods, which are costly and time-consuming.In this work, it is demonstrated that spectral responses obtained from a portable VIS/NIR imaging spectrometer can be used to predict food freshness using a CNN-based machine learning algorithm.In the food industry, the method can assess real-time food freshness nondestructively and cost-effectively.Abstract. There has been strong demand for the development of accurate but simple methods to assess the freshness of foods. In this study, a system is proposed to determine the freshness of fish by analyzing the spectral response with a portable visible/near-infrared (VIS/NIR) imaging spectrometer and a convolution neural network (CNN) machine learning algorithm. Spectral response data from salmon and tuna, which were incubated at 25°C, were obtained every minute for 30 h and were categorized into three stages (fresh, likely spoiled, or spoiled) based on the time and pH. Using the obtained spectral data, a CNN-based machine learning algorithm was built to evaluate the freshness of the experimental samples. The accuracy of the spectral data in predicting the freshness was ~84% for salmon and ~88% for tuna. Keywords: CNN, Fish, Freshness, pH, Spectral data, VIS/NIR.
期刊介绍:
This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.