CFD Analysis of Liquid-Cooled Heatsink Using Nanofluids in Computer Processors

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-06-26 DOI:10.24200/sci.2023.60327.6739
Gulnaz Topcu, U. Ercetin, Cisil Timuralp
{"title":"CFD Analysis of Liquid-Cooled Heatsink Using Nanofluids in Computer Processors","authors":"Gulnaz Topcu, U. Ercetin, Cisil Timuralp","doi":"10.24200/sci.2023.60327.6739","DOIUrl":null,"url":null,"abstract":"In this study, a computer model of the Zalman ZM-WB3 Gold heat exchanger which is one of the liquid-cooled computer processors in the market has been generated and the model has been confirmed by the previous researchers’ models and experimental data. Then, the fin thickness and heights of the same heat exchanger and the type of liquid fluid in which the heat exchanger operates have been changed. The CFD analyzes of the new models were performed by using Ansys Fluent 17.1 program. Following that, nano heat removal (cooling) performances were investigated with models using rectangular fin fluid heat exchangers with different fin heights of 5 mm, 5.5 mm and 5.7 mm, and different fin thicknesses of 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm and 2 mm, and different fluids as water, copper oxide-water (CuO-H 2 O) nanofluids with volume ratios of 2.25% and 0.86%, and graphene oxide (GO-H 2 O) nanofluid with the volume ratio of 0.01%. It was concluded that the best CPU cooler performance could be achieved by using CuO - H 2 O as nanofluid with a volumetric ratio of 2.25% with a heat exchanger that has a 5.5 mm fin height and 2.0 mm fin thickness.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24200/sci.2023.60327.6739","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a computer model of the Zalman ZM-WB3 Gold heat exchanger which is one of the liquid-cooled computer processors in the market has been generated and the model has been confirmed by the previous researchers’ models and experimental data. Then, the fin thickness and heights of the same heat exchanger and the type of liquid fluid in which the heat exchanger operates have been changed. The CFD analyzes of the new models were performed by using Ansys Fluent 17.1 program. Following that, nano heat removal (cooling) performances were investigated with models using rectangular fin fluid heat exchangers with different fin heights of 5 mm, 5.5 mm and 5.7 mm, and different fin thicknesses of 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm and 2 mm, and different fluids as water, copper oxide-water (CuO-H 2 O) nanofluids with volume ratios of 2.25% and 0.86%, and graphene oxide (GO-H 2 O) nanofluid with the volume ratio of 0.01%. It was concluded that the best CPU cooler performance could be achieved by using CuO - H 2 O as nanofluid with a volumetric ratio of 2.25% with a heat exchanger that has a 5.5 mm fin height and 2.0 mm fin thickness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机处理器中使用纳米流体的液冷散热器的CFD分析
本研究建立了市面上液冷计算机处理器之一的Zalman ZM-WB3 Gold换热器的计算机模型,并通过前人的模型和实验数据对模型进行了验证。然后,同一换热器的翅片厚度和高度以及换热器工作的液体流体类型都发生了变化。采用Ansys Fluent 17.1程序对新模型进行CFD分析。在此基础上,研究了矩形翅片流体换热器的纳米散热(冷却)性能。矩形翅片流体换热器的翅片高度分别为5mm、5.5 mm和5.7 mm,翅片厚度分别为1.2 mm、1.4 mm、1.6 mm、1.8 mm和2mm,流体为水、体积比分别为2.25%和0.86%的氧化铜-水(cuo - h2o)纳米流体和体积比分别为0.01%的氧化石墨烯(go - h2o)纳米流体。结果表明,采用体积比为2.25%的CuO - h2o作为纳米流体,翅片高度为5.5 mm,翅片厚度为2.0 mm的换热器,可以获得最佳的CPU冷却器性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1