High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Pub Date : 2023-08-20 DOI:10.1007/s11708-023-0892-6
Simiao Sha, Riyue Ge, Ying Li, Julie M. Cairney, Rongkun Zheng, Sean Li, Bin Liu, Jiujun Zhang, Wenxian Li
{"title":"High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions","authors":"Simiao Sha,&nbsp;Riyue Ge,&nbsp;Ying Li,&nbsp;Julie M. Cairney,&nbsp;Rongkun Zheng,&nbsp;Sean Li,&nbsp;Bin Liu,&nbsp;Jiujun Zhang,&nbsp;Wenxian Li","doi":"10.1007/s11708-023-0892-6","DOIUrl":null,"url":null,"abstract":"<div><p>High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and <i>ex-situ</i>/<i>in situ</i> characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 3","pages":"265 - 290"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-023-0892-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and ex-situ/in situ characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电化学水电解氢进化和氧进化反应的高熵催化剂
高熵材料(HEM)因其独特的性质,在电催化水电解氧气进化反应(OER)和氢气进化反应(HER)领域发展迅速。特别是,HEM 催化剂由多种元素组成。因此,与单原子相比,它们具有丰富的活性位点和更强的熵稳定性。本文综述了 HEM 催化剂的制备策略和在电化学水-电解中的应用,探讨了 HEM 的稳定性、催化机理及其在支持绿色制氢中的应用。首先,介绍了基于熵和组成的 HEM 的概念和四个特征。然后,从自下而上和自上而下两方面系统地综述了 HEM 催化剂的合成策略。重点讨论了近年来 HEMs 作为电化学水电解催化剂的应用,并结合理论计算技术和原位/原位表征实验,阐述了 HEMs 提高电催化性能的机理。最后,提出了 HEMs 的应用前景,以应对 HEM 催化剂制造和应用中的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
期刊最新文献
Performance analysis of a novel medium temperature compressed air energy storage system based on inverter-driven compressor pressure regulation Impact of bimetallic synergies on Mo-doping NiFeOOH: Insights into enhanced OER activity and reconstructed electronic structure Performance-enhanced direct ammonia protonic ceramic fuel cells using CeO2-supported Ni and Ru catalyst layer Low-carbon collaborative dual-layer optimization for energy station considering joint electricity and heat demand response Oxygen reduction reaction performance of Fe-N-C catalyst with dual nitrogen source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1